Loading…
Equational characterization for two-valued states in orthomodular quantum systems
In this paper we develop an algebraic framework in which several classes of two-valued states over orthomodular lattices may be equationally characterized. The class of two-valued states and the subclass of Jauch–Piron two-valued states are among the classes which we study.
Saved in:
Published in: | Reports on mathematical physics 2011, Vol.68 (1), p.65-83 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c388t-9333168ef6b73498ac7d12e503cd852a1a522f38f2f5eb51dd2943124b036caa3 |
---|---|
cites | cdi_FETCH-LOGICAL-c388t-9333168ef6b73498ac7d12e503cd852a1a522f38f2f5eb51dd2943124b036caa3 |
container_end_page | 83 |
container_issue | 1 |
container_start_page | 65 |
container_title | Reports on mathematical physics |
container_volume | 68 |
creator | Domenech, G. Freytes, H. de Ronde, C. |
description | In this paper we develop an algebraic framework in which several classes of two-valued states over orthomodular lattices may be equationally characterized. The class of two-valued states and the subclass of Jauch–Piron two-valued states are among the classes which we study. |
doi_str_mv | 10.1016/S0034-4877(11)60027-X |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_963842832</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S003448771160027X</els_id><sourcerecordid>963842832</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-9333168ef6b73498ac7d12e503cd852a1a522f38f2f5eb51dd2943124b036caa3</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWKs_QchOXYzmMZnJrERKfYAgokJ3IU3u0MjMpE0ylfrrnbbi1tWFwzkf3A-hc0quKaHFzRshPM9yWZaXlF4VhLAymx2gEZVllZGizA_R6K9yjE5i_CSEClmKEXqdrnqdnO90g81CB20SBPe9i3DtA05fPlvrpgeLY9IJInYd9iEtfOtt3-iAB0CX-hbHTUzQxlN0VOsmwtnvHaOP--n75DF7fnl4mtw9Z4ZLmbKKc04LCXUxL3leSW1KSxkIwo2VgmmqBWM1lzWrBcwFtZZVOacsnxNeGK35GF3sucvgVz3EpFoXDTSN7sD3UVUFlzmTnA1NsW-a4GMMUKtlcK0OG0WJ2hpUO4Nqq0dRqnYG1WzY3e53MLyxdhBUNA46A9YFMElZ7_4h_AAOrHnk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>963842832</pqid></control><display><type>article</type><title>Equational characterization for two-valued states in orthomodular quantum systems</title><source>ScienceDirect Journals</source><source>Backfile Package - Physics General (Legacy) [YPA]</source><source>Backfile Package - Mathematics (Legacy) [YMT]</source><creator>Domenech, G. ; Freytes, H. ; de Ronde, C.</creator><creatorcontrib>Domenech, G. ; Freytes, H. ; de Ronde, C.</creatorcontrib><description>In this paper we develop an algebraic framework in which several classes of two-valued states over orthomodular lattices may be equationally characterized. The class of two-valued states and the subclass of Jauch–Piron two-valued states are among the classes which we study.</description><identifier>ISSN: 0034-4877</identifier><identifier>EISSN: 1879-0674</identifier><identifier>DOI: 10.1016/S0034-4877(11)60027-X</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Algebra ; Lattices ; Mathematical analysis ; orthomodular lattices ; Quantum theory ; two-valued states ; varieties</subject><ispartof>Reports on mathematical physics, 2011, Vol.68 (1), p.65-83</ispartof><rights>2011 Polish Scientific Publishers</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-9333168ef6b73498ac7d12e503cd852a1a522f38f2f5eb51dd2943124b036caa3</citedby><cites>FETCH-LOGICAL-c388t-9333168ef6b73498ac7d12e503cd852a1a522f38f2f5eb51dd2943124b036caa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S003448771160027X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3562,3630,4022,27922,27923,27924,46002,46011</link.rule.ids></links><search><creatorcontrib>Domenech, G.</creatorcontrib><creatorcontrib>Freytes, H.</creatorcontrib><creatorcontrib>de Ronde, C.</creatorcontrib><title>Equational characterization for two-valued states in orthomodular quantum systems</title><title>Reports on mathematical physics</title><description>In this paper we develop an algebraic framework in which several classes of two-valued states over orthomodular lattices may be equationally characterized. The class of two-valued states and the subclass of Jauch–Piron two-valued states are among the classes which we study.</description><subject>Algebra</subject><subject>Lattices</subject><subject>Mathematical analysis</subject><subject>orthomodular lattices</subject><subject>Quantum theory</subject><subject>two-valued states</subject><subject>varieties</subject><issn>0034-4877</issn><issn>1879-0674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWKs_QchOXYzmMZnJrERKfYAgokJ3IU3u0MjMpE0ylfrrnbbi1tWFwzkf3A-hc0quKaHFzRshPM9yWZaXlF4VhLAymx2gEZVllZGizA_R6K9yjE5i_CSEClmKEXqdrnqdnO90g81CB20SBPe9i3DtA05fPlvrpgeLY9IJInYd9iEtfOtt3-iAB0CX-hbHTUzQxlN0VOsmwtnvHaOP--n75DF7fnl4mtw9Z4ZLmbKKc04LCXUxL3leSW1KSxkIwo2VgmmqBWM1lzWrBcwFtZZVOacsnxNeGK35GF3sucvgVz3EpFoXDTSN7sD3UVUFlzmTnA1NsW-a4GMMUKtlcK0OG0WJ2hpUO4Nqq0dRqnYG1WzY3e53MLyxdhBUNA46A9YFMElZ7_4h_AAOrHnk</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>Domenech, G.</creator><creator>Freytes, H.</creator><creator>de Ronde, C.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>2011</creationdate><title>Equational characterization for two-valued states in orthomodular quantum systems</title><author>Domenech, G. ; Freytes, H. ; de Ronde, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-9333168ef6b73498ac7d12e503cd852a1a522f38f2f5eb51dd2943124b036caa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algebra</topic><topic>Lattices</topic><topic>Mathematical analysis</topic><topic>orthomodular lattices</topic><topic>Quantum theory</topic><topic>two-valued states</topic><topic>varieties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Domenech, G.</creatorcontrib><creatorcontrib>Freytes, H.</creatorcontrib><creatorcontrib>de Ronde, C.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Reports on mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Domenech, G.</au><au>Freytes, H.</au><au>de Ronde, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Equational characterization for two-valued states in orthomodular quantum systems</atitle><jtitle>Reports on mathematical physics</jtitle><date>2011</date><risdate>2011</risdate><volume>68</volume><issue>1</issue><spage>65</spage><epage>83</epage><pages>65-83</pages><issn>0034-4877</issn><eissn>1879-0674</eissn><abstract>In this paper we develop an algebraic framework in which several classes of two-valued states over orthomodular lattices may be equationally characterized. The class of two-valued states and the subclass of Jauch–Piron two-valued states are among the classes which we study.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/S0034-4877(11)60027-X</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0034-4877 |
ispartof | Reports on mathematical physics, 2011, Vol.68 (1), p.65-83 |
issn | 0034-4877 1879-0674 |
language | eng |
recordid | cdi_proquest_miscellaneous_963842832 |
source | ScienceDirect Journals; Backfile Package - Physics General (Legacy) [YPA]; Backfile Package - Mathematics (Legacy) [YMT] |
subjects | Algebra Lattices Mathematical analysis orthomodular lattices Quantum theory two-valued states varieties |
title | Equational characterization for two-valued states in orthomodular quantum systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T22%3A12%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Equational%20characterization%20for%20two-valued%20states%20in%20orthomodular%20quantum%20systems&rft.jtitle=Reports%20on%20mathematical%20physics&rft.au=Domenech,%20G.&rft.date=2011&rft.volume=68&rft.issue=1&rft.spage=65&rft.epage=83&rft.pages=65-83&rft.issn=0034-4877&rft.eissn=1879-0674&rft_id=info:doi/10.1016/S0034-4877(11)60027-X&rft_dat=%3Cproquest_cross%3E963842832%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c388t-9333168ef6b73498ac7d12e503cd852a1a522f38f2f5eb51dd2943124b036caa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=963842832&rft_id=info:pmid/&rfr_iscdi=true |