Loading…
The role of brookite in mechanical activation of anatase-to-rutile transformation of nanocrystalline TiO2: An XRD and Raman spectroscopy investigation
The mechanism of phase transformation in nanocrystalline TiO2 powders at ambient temperature during high energy ball milling and the role of brookite phase in anatase-to-rutile phase transformation were investigated by the use of Rietveld analysis of X-ray diffraction patterns and Raman spectroscopy...
Saved in:
Published in: | CrystEngComm 2011-01, Vol.13 (16), p.5055-5061 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The mechanism of phase transformation in nanocrystalline TiO2 powders at ambient temperature during high energy ball milling and the role of brookite phase in anatase-to-rutile phase transformation were investigated by the use of Rietveld analysis of X-ray diffraction patterns and Raman spectroscopy methods. The milling process was performed on a fully anatase phase nanocrystalline TiO2 powder via a high energy planetary ball mill with different ball-to-powder weight ratios followed by annealing of the as-milled samples. Some transformation from anatase-to-brookite was observed in all as-milled powders by high resolution transmission electron microscopy. It was proposed that brookite occurs at the {112} twin surfaces of anatase phase and therefore promotes anatase-to-rutile phase transformation. Based on the XRD and Raman results, it was proposed that brookite appears as an essential intermediate phase in mechanically induced anatase-to-rutile phase transformation which facilitates the phase transformation at ambient temperatures and also at higher temperatures during the post-annealing step. |
---|---|
ISSN: | 1466-8033 1466-8033 |
DOI: | 10.1039/c1ce05185g |