Loading…

Surface structure changes on aluminosilicate microspheres at the interface with simulated body fluid

► Aluminosilicate microspheres less than 20 μm were prepared by spray drying. ► Microspheres structure is modified after immersion in simulated body fluid (SBF). ► Silica network is partially depolymerized by hydration/hydroxylation in SBF. ► After SBF immersion the aluminum environment is completel...

Full description

Saved in:
Bibliographic Details
Published in:Corrosion science 2012, Vol.54, p.299-306
Main Authors: Todea, M., Frentiu, B., Turcu, R.F.V., Berce, P., Simon, S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:► Aluminosilicate microspheres less than 20 μm were prepared by spray drying. ► Microspheres structure is modified after immersion in simulated body fluid (SBF). ► Silica network is partially depolymerized by hydration/hydroxylation in SBF. ► After SBF immersion the aluminum environment is completely changed. ► Apatite type nanocrystals grown on microspheres in SBF mark their bioactivity. Aluminosilicate microspheres obtained by spray drying were investigated in prospect of their potential biomedical applications. The as-prepared microspheres are amorphous. TEM and AFM were used to examine the morphology of the samples before and after immersion in simulated body fluid (SBF). The local structure changes as a function of microspheres composition and due to their immersion in SBF were investigated by 29Si and 27Al MAS–NMR. After SBF immersion, the silica network partially depolymerised by hydration/hydroxylation and the completely changed aluminium environment suggest a phylosilicate-like structure. 31P MAS–NMR analysis evidenced phosphorus ions incorporated in a new crystalline phase developed during SBF immersion.
ISSN:0010-938X
1879-0496
DOI:10.1016/j.corsci.2011.09.032