Loading…

Slice imaging and wave packet study of the photodissociation of CH3I in the blue edge of the A-band: evidence of reverse 3Q0 ← 1Q1 non-adiabatic dynamics

The photodissociation of CH(3)I in the blue edge (217-230 nm) of the A-band has been studied using a combination of slice imaging and resonance enhanced multiphoton ionization (REMPI) detection of the CH(3) fragment in the vibrational ground state (ν = 0). The profiles of the CH(3) (ν = 0) kinetic e...

Full description

Saved in:
Bibliographic Details
Published in:Physical chemistry chemical physics : PCCP 2011-01, Vol.13 (36), p.16404-16415
Main Authors: GONZALEZ, M. G, RODRIGUEZ, J. D, RUBIO-LAGO, L, GARCIA-VELA, A, BANARES, L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The photodissociation of CH(3)I in the blue edge (217-230 nm) of the A-band has been studied using a combination of slice imaging and resonance enhanced multiphoton ionization (REMPI) detection of the CH(3) fragment in the vibrational ground state (ν = 0). The profiles of the CH(3) (ν = 0) kinetic energy distributions and the photofragment anisotropies are interpreted in terms of the contribution of the excited surfaces involved in the photodissociation process, as well as the probability of non-adiabatic curve crossing between the (3)Q(0) and (1)Q(1) states. In the studied region, unlike in the central part of the A-band where absorption to the (3)Q(0) state dominates, the I((2)P(J)), with J = 1/2, 3/2, in correlation with CH(3) (ν = 0) kinetic energy distributions show clearly two contributions of different anisotropy, signature of the competing adiabatic and non-adiabatic dynamics, whose ratio strongly depends on the photolysis wavelength. The experimental results are compared with multisurface wave packet calculations carried out using the available ab initio potential energy surfaces, transition moments, and non-adiabatic couplings, employing a reduced dimensionality model. A good qualitative agreement is found between experiment and theory and both show evidence of reverse (3)Q(0)←(1)Q(1) non-adiabatic dynamics at the bluest excitation wavelengths both in the fragment kinetic energy and angular distributions.
ISSN:1463-9076
1463-9084
DOI:10.1039/c1cp21378d