Loading…

The interaction of CO with PdAg/Pd(111) surface alloys--a case study of ensemble effects on a bimetallic surface

The interaction of CO with structurally well-defined PdAg/Pd(111) surface alloys was investigated by temperature-programmed desorption (TPD) and high-resolution electron energy loss spectroscopy (HREELS) to unravel and understand contributions from electronic strain, electronic ligand and geometric...

Full description

Saved in:
Bibliographic Details
Published in:Physical chemistry chemical physics : PCCP 2011-06, Vol.13 (22), p.10741-10754
Main Authors: Ma, Yunsheng, Diemant, T, Bansmann, J, Behm, R J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The interaction of CO with structurally well-defined PdAg/Pd(111) surface alloys was investigated by temperature-programmed desorption (TPD) and high-resolution electron energy loss spectroscopy (HREELS) to unravel and understand contributions from electronic strain, electronic ligand and geometric ensemble effects. TPD measurements indicate that CO adsorption is not possible on the Ag sites of the surface alloys (at 120 K) and that the CO binding strength on Pd sites decreases significantly with increasing Ag concentration. Comparison with previous scanning tunneling microscopy (STM) data on the distribution of Pd and Ag atoms in the surface alloy shows that this modification is mainly due to geometric ensemble effects, since Pd(3) ensembles, which are the preferred ensembles for CO adsorption on non-modified Pd(111), are no longer available on Ag-rich surfaces. Consequently, the preferred CO adsorption site changes with increasing Ag content from a Pd(3) trimer via a Pd(2) dimer to a Pd monomer, going along with a successive weakening of CO adsorption. Additionally, the CO adsorption properties of the surface alloys are also influenced by electronic ligand and strain effects, but on a lower scale. The results are discussed in comparison with previous findings on PdAg bulk alloys, supported PdAg catalysts and PdAu/Pd(111) model systems.
ISSN:1463-9076
1463-9084
DOI:10.1039/c1cp00009h