Loading…
Intrinsic defects and dopants in LiNH2: a first-principles study
The lithium amide (LiNH(2)) + lithium hydride (LiH) system is one of the most attractive light-weight materials options for hydrogen storage. Its dehydrogenation involves mass transport in the bulk (amide) crystal through lattice defects. We present a first-principles study of native point defects a...
Saved in:
Published in: | Physical chemistry chemical physics : PCCP 2011-04, Vol.13 (13), p.6043-6052 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c384t-ef1e9b341e8017fce42b4797e11cd5ea152c6788312e0c10cbbff70070c8c6c23 |
---|---|
cites | cdi_FETCH-LOGICAL-c384t-ef1e9b341e8017fce42b4797e11cd5ea152c6788312e0c10cbbff70070c8c6c23 |
container_end_page | 6052 |
container_issue | 13 |
container_start_page | 6043 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 13 |
creator | HAZRATI, E BROCKS, G BUURMAN, B DE GROOT, R. A DE WIJS, G. A |
description | The lithium amide (LiNH(2)) + lithium hydride (LiH) system is one of the most attractive light-weight materials options for hydrogen storage. Its dehydrogenation involves mass transport in the bulk (amide) crystal through lattice defects. We present a first-principles study of native point defects and dopants in LiNH(2) using density functional theory. We find that both Li-related defects (the positive interstitial Li(i)(+) and the negative vacancy V(Li)(-)) and H-related defects (H(i)(+) and V(H)(-)) are charged. Li-related defects are most abundant. Having diffusion barriers of 0.3-0.5 eV, they diffuse rapidly at moderate temperatures. V(H)(-) corresponds to the [NH](2-) ion. It is the dominant species available for proton transport with a diffusion barrier of ∼0.7 eV. The equilibrium concentration of H(i)(+), which corresponds to the NH(3) molecule, is negligible in bulk LiNH(2). Dopants such as Ti and Sc do not affect the concentration of intrinsic defects, whereas Mg and Ca can alter it by a moderate amount. Ti and Mg are easily incorporated into the LiNH(2) lattice, which may affect the crystal morphology on the nano-scale. |
doi_str_mv | 10.1039/c0cp01540g |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_963861841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>857811844</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-ef1e9b341e8017fce42b4797e11cd5ea152c6788312e0c10cbbff70070c8c6c23</originalsourceid><addsrcrecordid>eNqF0EFLw0AQBeBFFKvViz9AchFBiM5kN9mNJ6WoLRS96DlsJrMSSdOYTQ_99660tkdP8w4fD-YJcYFwiyDzOwLqAFMFnwfiBFUm4xyMOtxlnY3EqfdfAEGhPBajBKVSoPWJeJi1Q1-3vqaoYsc0-Mi2VVQtO9uGXLfRvH6dJveRjVzd-yHugqa6a9hHflhV6zNx5Gzj-Xx7x-Lj-el9Mo3nby-zyeM8JmnUELNDzkupkA2gdsQqKZXONSNSlbLFNKFMGyMxYSAEKkvnNIAGMpRRIsfietPb9cvvFfuhWNSeuGlsy8uVL_JMmgyNwn-lSbXBIFWQNxtJ_dL7nl0RvlvYfl0gFL_TFvtpA77c1q7KBVc7-rdlAFdbYD3ZxvU2DOX3ToHSKYD8AVTbf4Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>857811844</pqid></control><display><type>article</type><title>Intrinsic defects and dopants in LiNH2: a first-principles study</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>HAZRATI, E ; BROCKS, G ; BUURMAN, B ; DE GROOT, R. A ; DE WIJS, G. A</creator><creatorcontrib>HAZRATI, E ; BROCKS, G ; BUURMAN, B ; DE GROOT, R. A ; DE WIJS, G. A</creatorcontrib><description>The lithium amide (LiNH(2)) + lithium hydride (LiH) system is one of the most attractive light-weight materials options for hydrogen storage. Its dehydrogenation involves mass transport in the bulk (amide) crystal through lattice defects. We present a first-principles study of native point defects and dopants in LiNH(2) using density functional theory. We find that both Li-related defects (the positive interstitial Li(i)(+) and the negative vacancy V(Li)(-)) and H-related defects (H(i)(+) and V(H)(-)) are charged. Li-related defects are most abundant. Having diffusion barriers of 0.3-0.5 eV, they diffuse rapidly at moderate temperatures. V(H)(-) corresponds to the [NH](2-) ion. It is the dominant species available for proton transport with a diffusion barrier of ∼0.7 eV. The equilibrium concentration of H(i)(+), which corresponds to the NH(3) molecule, is negligible in bulk LiNH(2). Dopants such as Ti and Sc do not affect the concentration of intrinsic defects, whereas Mg and Ca can alter it by a moderate amount. Ti and Mg are easily incorporated into the LiNH(2) lattice, which may affect the crystal morphology on the nano-scale.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c0cp01540g</identifier><identifier>PMID: 21344077</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Amides ; Chemistry ; Crystal defects ; Crystal lattices ; Diffusion barriers ; Dopants ; Exact sciences and technology ; General and physical chemistry ; Magnesium ; Nanostructure ; Titanium</subject><ispartof>Physical chemistry chemical physics : PCCP, 2011-04, Vol.13 (13), p.6043-6052</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-ef1e9b341e8017fce42b4797e11cd5ea152c6788312e0c10cbbff70070c8c6c23</citedby><cites>FETCH-LOGICAL-c384t-ef1e9b341e8017fce42b4797e11cd5ea152c6788312e0c10cbbff70070c8c6c23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24047500$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21344077$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>HAZRATI, E</creatorcontrib><creatorcontrib>BROCKS, G</creatorcontrib><creatorcontrib>BUURMAN, B</creatorcontrib><creatorcontrib>DE GROOT, R. A</creatorcontrib><creatorcontrib>DE WIJS, G. A</creatorcontrib><title>Intrinsic defects and dopants in LiNH2: a first-principles study</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>The lithium amide (LiNH(2)) + lithium hydride (LiH) system is one of the most attractive light-weight materials options for hydrogen storage. Its dehydrogenation involves mass transport in the bulk (amide) crystal through lattice defects. We present a first-principles study of native point defects and dopants in LiNH(2) using density functional theory. We find that both Li-related defects (the positive interstitial Li(i)(+) and the negative vacancy V(Li)(-)) and H-related defects (H(i)(+) and V(H)(-)) are charged. Li-related defects are most abundant. Having diffusion barriers of 0.3-0.5 eV, they diffuse rapidly at moderate temperatures. V(H)(-) corresponds to the [NH](2-) ion. It is the dominant species available for proton transport with a diffusion barrier of ∼0.7 eV. The equilibrium concentration of H(i)(+), which corresponds to the NH(3) molecule, is negligible in bulk LiNH(2). Dopants such as Ti and Sc do not affect the concentration of intrinsic defects, whereas Mg and Ca can alter it by a moderate amount. Ti and Mg are easily incorporated into the LiNH(2) lattice, which may affect the crystal morphology on the nano-scale.</description><subject>Amides</subject><subject>Chemistry</subject><subject>Crystal defects</subject><subject>Crystal lattices</subject><subject>Diffusion barriers</subject><subject>Dopants</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Magnesium</subject><subject>Nanostructure</subject><subject>Titanium</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqF0EFLw0AQBeBFFKvViz9AchFBiM5kN9mNJ6WoLRS96DlsJrMSSdOYTQ_99660tkdP8w4fD-YJcYFwiyDzOwLqAFMFnwfiBFUm4xyMOtxlnY3EqfdfAEGhPBajBKVSoPWJeJi1Q1-3vqaoYsc0-Mi2VVQtO9uGXLfRvH6dJveRjVzd-yHugqa6a9hHflhV6zNx5Gzj-Xx7x-Lj-el9Mo3nby-zyeM8JmnUELNDzkupkA2gdsQqKZXONSNSlbLFNKFMGyMxYSAEKkvnNIAGMpRRIsfietPb9cvvFfuhWNSeuGlsy8uVL_JMmgyNwn-lSbXBIFWQNxtJ_dL7nl0RvlvYfl0gFL_TFvtpA77c1q7KBVc7-rdlAFdbYD3ZxvU2DOX3ToHSKYD8AVTbf4Y</recordid><startdate>20110407</startdate><enddate>20110407</enddate><creator>HAZRATI, E</creator><creator>BROCKS, G</creator><creator>BUURMAN, B</creator><creator>DE GROOT, R. A</creator><creator>DE WIJS, G. A</creator><general>Royal Society of Chemistry</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20110407</creationdate><title>Intrinsic defects and dopants in LiNH2: a first-principles study</title><author>HAZRATI, E ; BROCKS, G ; BUURMAN, B ; DE GROOT, R. A ; DE WIJS, G. A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-ef1e9b341e8017fce42b4797e11cd5ea152c6788312e0c10cbbff70070c8c6c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Amides</topic><topic>Chemistry</topic><topic>Crystal defects</topic><topic>Crystal lattices</topic><topic>Diffusion barriers</topic><topic>Dopants</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Magnesium</topic><topic>Nanostructure</topic><topic>Titanium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>HAZRATI, E</creatorcontrib><creatorcontrib>BROCKS, G</creatorcontrib><creatorcontrib>BUURMAN, B</creatorcontrib><creatorcontrib>DE GROOT, R. A</creatorcontrib><creatorcontrib>DE WIJS, G. A</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>HAZRATI, E</au><au>BROCKS, G</au><au>BUURMAN, B</au><au>DE GROOT, R. A</au><au>DE WIJS, G. A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intrinsic defects and dopants in LiNH2: a first-principles study</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2011-04-07</date><risdate>2011</risdate><volume>13</volume><issue>13</issue><spage>6043</spage><epage>6052</epage><pages>6043-6052</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>The lithium amide (LiNH(2)) + lithium hydride (LiH) system is one of the most attractive light-weight materials options for hydrogen storage. Its dehydrogenation involves mass transport in the bulk (amide) crystal through lattice defects. We present a first-principles study of native point defects and dopants in LiNH(2) using density functional theory. We find that both Li-related defects (the positive interstitial Li(i)(+) and the negative vacancy V(Li)(-)) and H-related defects (H(i)(+) and V(H)(-)) are charged. Li-related defects are most abundant. Having diffusion barriers of 0.3-0.5 eV, they diffuse rapidly at moderate temperatures. V(H)(-) corresponds to the [NH](2-) ion. It is the dominant species available for proton transport with a diffusion barrier of ∼0.7 eV. The equilibrium concentration of H(i)(+), which corresponds to the NH(3) molecule, is negligible in bulk LiNH(2). Dopants such as Ti and Sc do not affect the concentration of intrinsic defects, whereas Mg and Ca can alter it by a moderate amount. Ti and Mg are easily incorporated into the LiNH(2) lattice, which may affect the crystal morphology on the nano-scale.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><pmid>21344077</pmid><doi>10.1039/c0cp01540g</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2011-04, Vol.13 (13), p.6043-6052 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_proquest_miscellaneous_963861841 |
source | Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list) |
subjects | Amides Chemistry Crystal defects Crystal lattices Diffusion barriers Dopants Exact sciences and technology General and physical chemistry Magnesium Nanostructure Titanium |
title | Intrinsic defects and dopants in LiNH2: a first-principles study |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A38%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intrinsic%20defects%20and%20dopants%20in%20LiNH2:%20a%20first-principles%20study&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=HAZRATI,%20E&rft.date=2011-04-07&rft.volume=13&rft.issue=13&rft.spage=6043&rft.epage=6052&rft.pages=6043-6052&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c0cp01540g&rft_dat=%3Cproquest_cross%3E857811844%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c384t-ef1e9b341e8017fce42b4797e11cd5ea152c6788312e0c10cbbff70070c8c6c23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=857811844&rft_id=info:pmid/21344077&rfr_iscdi=true |