Loading…

Intrinsic defects and dopants in LiNH2: a first-principles study

The lithium amide (LiNH(2)) + lithium hydride (LiH) system is one of the most attractive light-weight materials options for hydrogen storage. Its dehydrogenation involves mass transport in the bulk (amide) crystal through lattice defects. We present a first-principles study of native point defects a...

Full description

Saved in:
Bibliographic Details
Published in:Physical chemistry chemical physics : PCCP 2011-04, Vol.13 (13), p.6043-6052
Main Authors: HAZRATI, E, BROCKS, G, BUURMAN, B, DE GROOT, R. A, DE WIJS, G. A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c384t-ef1e9b341e8017fce42b4797e11cd5ea152c6788312e0c10cbbff70070c8c6c23
cites cdi_FETCH-LOGICAL-c384t-ef1e9b341e8017fce42b4797e11cd5ea152c6788312e0c10cbbff70070c8c6c23
container_end_page 6052
container_issue 13
container_start_page 6043
container_title Physical chemistry chemical physics : PCCP
container_volume 13
creator HAZRATI, E
BROCKS, G
BUURMAN, B
DE GROOT, R. A
DE WIJS, G. A
description The lithium amide (LiNH(2)) + lithium hydride (LiH) system is one of the most attractive light-weight materials options for hydrogen storage. Its dehydrogenation involves mass transport in the bulk (amide) crystal through lattice defects. We present a first-principles study of native point defects and dopants in LiNH(2) using density functional theory. We find that both Li-related defects (the positive interstitial Li(i)(+) and the negative vacancy V(Li)(-)) and H-related defects (H(i)(+) and V(H)(-)) are charged. Li-related defects are most abundant. Having diffusion barriers of 0.3-0.5 eV, they diffuse rapidly at moderate temperatures. V(H)(-) corresponds to the [NH](2-) ion. It is the dominant species available for proton transport with a diffusion barrier of ∼0.7 eV. The equilibrium concentration of H(i)(+), which corresponds to the NH(3) molecule, is negligible in bulk LiNH(2). Dopants such as Ti and Sc do not affect the concentration of intrinsic defects, whereas Mg and Ca can alter it by a moderate amount. Ti and Mg are easily incorporated into the LiNH(2) lattice, which may affect the crystal morphology on the nano-scale.
doi_str_mv 10.1039/c0cp01540g
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_963861841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>857811844</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-ef1e9b341e8017fce42b4797e11cd5ea152c6788312e0c10cbbff70070c8c6c23</originalsourceid><addsrcrecordid>eNqF0EFLw0AQBeBFFKvViz9AchFBiM5kN9mNJ6WoLRS96DlsJrMSSdOYTQ_99660tkdP8w4fD-YJcYFwiyDzOwLqAFMFnwfiBFUm4xyMOtxlnY3EqfdfAEGhPBajBKVSoPWJeJi1Q1-3vqaoYsc0-Mi2VVQtO9uGXLfRvH6dJveRjVzd-yHugqa6a9hHflhV6zNx5Gzj-Xx7x-Lj-el9Mo3nby-zyeM8JmnUELNDzkupkA2gdsQqKZXONSNSlbLFNKFMGyMxYSAEKkvnNIAGMpRRIsfietPb9cvvFfuhWNSeuGlsy8uVL_JMmgyNwn-lSbXBIFWQNxtJ_dL7nl0RvlvYfl0gFL_TFvtpA77c1q7KBVc7-rdlAFdbYD3ZxvU2DOX3ToHSKYD8AVTbf4Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>857811844</pqid></control><display><type>article</type><title>Intrinsic defects and dopants in LiNH2: a first-principles study</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>HAZRATI, E ; BROCKS, G ; BUURMAN, B ; DE GROOT, R. A ; DE WIJS, G. A</creator><creatorcontrib>HAZRATI, E ; BROCKS, G ; BUURMAN, B ; DE GROOT, R. A ; DE WIJS, G. A</creatorcontrib><description>The lithium amide (LiNH(2)) + lithium hydride (LiH) system is one of the most attractive light-weight materials options for hydrogen storage. Its dehydrogenation involves mass transport in the bulk (amide) crystal through lattice defects. We present a first-principles study of native point defects and dopants in LiNH(2) using density functional theory. We find that both Li-related defects (the positive interstitial Li(i)(+) and the negative vacancy V(Li)(-)) and H-related defects (H(i)(+) and V(H)(-)) are charged. Li-related defects are most abundant. Having diffusion barriers of 0.3-0.5 eV, they diffuse rapidly at moderate temperatures. V(H)(-) corresponds to the [NH](2-) ion. It is the dominant species available for proton transport with a diffusion barrier of ∼0.7 eV. The equilibrium concentration of H(i)(+), which corresponds to the NH(3) molecule, is negligible in bulk LiNH(2). Dopants such as Ti and Sc do not affect the concentration of intrinsic defects, whereas Mg and Ca can alter it by a moderate amount. Ti and Mg are easily incorporated into the LiNH(2) lattice, which may affect the crystal morphology on the nano-scale.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c0cp01540g</identifier><identifier>PMID: 21344077</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Amides ; Chemistry ; Crystal defects ; Crystal lattices ; Diffusion barriers ; Dopants ; Exact sciences and technology ; General and physical chemistry ; Magnesium ; Nanostructure ; Titanium</subject><ispartof>Physical chemistry chemical physics : PCCP, 2011-04, Vol.13 (13), p.6043-6052</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-ef1e9b341e8017fce42b4797e11cd5ea152c6788312e0c10cbbff70070c8c6c23</citedby><cites>FETCH-LOGICAL-c384t-ef1e9b341e8017fce42b4797e11cd5ea152c6788312e0c10cbbff70070c8c6c23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24047500$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21344077$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>HAZRATI, E</creatorcontrib><creatorcontrib>BROCKS, G</creatorcontrib><creatorcontrib>BUURMAN, B</creatorcontrib><creatorcontrib>DE GROOT, R. A</creatorcontrib><creatorcontrib>DE WIJS, G. A</creatorcontrib><title>Intrinsic defects and dopants in LiNH2: a first-principles study</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>The lithium amide (LiNH(2)) + lithium hydride (LiH) system is one of the most attractive light-weight materials options for hydrogen storage. Its dehydrogenation involves mass transport in the bulk (amide) crystal through lattice defects. We present a first-principles study of native point defects and dopants in LiNH(2) using density functional theory. We find that both Li-related defects (the positive interstitial Li(i)(+) and the negative vacancy V(Li)(-)) and H-related defects (H(i)(+) and V(H)(-)) are charged. Li-related defects are most abundant. Having diffusion barriers of 0.3-0.5 eV, they diffuse rapidly at moderate temperatures. V(H)(-) corresponds to the [NH](2-) ion. It is the dominant species available for proton transport with a diffusion barrier of ∼0.7 eV. The equilibrium concentration of H(i)(+), which corresponds to the NH(3) molecule, is negligible in bulk LiNH(2). Dopants such as Ti and Sc do not affect the concentration of intrinsic defects, whereas Mg and Ca can alter it by a moderate amount. Ti and Mg are easily incorporated into the LiNH(2) lattice, which may affect the crystal morphology on the nano-scale.</description><subject>Amides</subject><subject>Chemistry</subject><subject>Crystal defects</subject><subject>Crystal lattices</subject><subject>Diffusion barriers</subject><subject>Dopants</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Magnesium</subject><subject>Nanostructure</subject><subject>Titanium</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqF0EFLw0AQBeBFFKvViz9AchFBiM5kN9mNJ6WoLRS96DlsJrMSSdOYTQ_99660tkdP8w4fD-YJcYFwiyDzOwLqAFMFnwfiBFUm4xyMOtxlnY3EqfdfAEGhPBajBKVSoPWJeJi1Q1-3vqaoYsc0-Mi2VVQtO9uGXLfRvH6dJveRjVzd-yHugqa6a9hHflhV6zNx5Gzj-Xx7x-Lj-el9Mo3nby-zyeM8JmnUELNDzkupkA2gdsQqKZXONSNSlbLFNKFMGyMxYSAEKkvnNIAGMpRRIsfietPb9cvvFfuhWNSeuGlsy8uVL_JMmgyNwn-lSbXBIFWQNxtJ_dL7nl0RvlvYfl0gFL_TFvtpA77c1q7KBVc7-rdlAFdbYD3ZxvU2DOX3ToHSKYD8AVTbf4Y</recordid><startdate>20110407</startdate><enddate>20110407</enddate><creator>HAZRATI, E</creator><creator>BROCKS, G</creator><creator>BUURMAN, B</creator><creator>DE GROOT, R. A</creator><creator>DE WIJS, G. A</creator><general>Royal Society of Chemistry</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20110407</creationdate><title>Intrinsic defects and dopants in LiNH2: a first-principles study</title><author>HAZRATI, E ; BROCKS, G ; BUURMAN, B ; DE GROOT, R. A ; DE WIJS, G. A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-ef1e9b341e8017fce42b4797e11cd5ea152c6788312e0c10cbbff70070c8c6c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Amides</topic><topic>Chemistry</topic><topic>Crystal defects</topic><topic>Crystal lattices</topic><topic>Diffusion barriers</topic><topic>Dopants</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Magnesium</topic><topic>Nanostructure</topic><topic>Titanium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>HAZRATI, E</creatorcontrib><creatorcontrib>BROCKS, G</creatorcontrib><creatorcontrib>BUURMAN, B</creatorcontrib><creatorcontrib>DE GROOT, R. A</creatorcontrib><creatorcontrib>DE WIJS, G. A</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>HAZRATI, E</au><au>BROCKS, G</au><au>BUURMAN, B</au><au>DE GROOT, R. A</au><au>DE WIJS, G. A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intrinsic defects and dopants in LiNH2: a first-principles study</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2011-04-07</date><risdate>2011</risdate><volume>13</volume><issue>13</issue><spage>6043</spage><epage>6052</epage><pages>6043-6052</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>The lithium amide (LiNH(2)) + lithium hydride (LiH) system is one of the most attractive light-weight materials options for hydrogen storage. Its dehydrogenation involves mass transport in the bulk (amide) crystal through lattice defects. We present a first-principles study of native point defects and dopants in LiNH(2) using density functional theory. We find that both Li-related defects (the positive interstitial Li(i)(+) and the negative vacancy V(Li)(-)) and H-related defects (H(i)(+) and V(H)(-)) are charged. Li-related defects are most abundant. Having diffusion barriers of 0.3-0.5 eV, they diffuse rapidly at moderate temperatures. V(H)(-) corresponds to the [NH](2-) ion. It is the dominant species available for proton transport with a diffusion barrier of ∼0.7 eV. The equilibrium concentration of H(i)(+), which corresponds to the NH(3) molecule, is negligible in bulk LiNH(2). Dopants such as Ti and Sc do not affect the concentration of intrinsic defects, whereas Mg and Ca can alter it by a moderate amount. Ti and Mg are easily incorporated into the LiNH(2) lattice, which may affect the crystal morphology on the nano-scale.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><pmid>21344077</pmid><doi>10.1039/c0cp01540g</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2011-04, Vol.13 (13), p.6043-6052
issn 1463-9076
1463-9084
language eng
recordid cdi_proquest_miscellaneous_963861841
source Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)
subjects Amides
Chemistry
Crystal defects
Crystal lattices
Diffusion barriers
Dopants
Exact sciences and technology
General and physical chemistry
Magnesium
Nanostructure
Titanium
title Intrinsic defects and dopants in LiNH2: a first-principles study
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A38%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intrinsic%20defects%20and%20dopants%20in%20LiNH2:%20a%20first-principles%20study&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=HAZRATI,%20E&rft.date=2011-04-07&rft.volume=13&rft.issue=13&rft.spage=6043&rft.epage=6052&rft.pages=6043-6052&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c0cp01540g&rft_dat=%3Cproquest_cross%3E857811844%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c384t-ef1e9b341e8017fce42b4797e11cd5ea152c6788312e0c10cbbff70070c8c6c23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=857811844&rft_id=info:pmid/21344077&rfr_iscdi=true