Loading…
Performance Characteristics and Metrics for Intra-Pulse Radar-Embedded Communication
Low probability of intercept (LPI) communication generally relies on the presence of noise to obfuscate a covert signal through the use of spectral spreading or hopping. In contrast, this paper addresses the use of ambient interference from other man-made emissions as a means to mask the presence of...
Saved in:
Published in: | IEEE journal on selected areas in communications 2011-12, Vol.29 (10), p.2057-2066 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Low probability of intercept (LPI) communication generally relies on the presence of noise to obfuscate a covert signal through the use of spectral spreading or hopping. In contrast, this paper addresses the use of ambient interference from other man-made emissions as a means to mask the presence of covert communication. Specifically, the high power, wide bandwidth, and repeating structure of pulsed radar systems provide an advantageous framework within which to embed a communication signal. The operating paradigm considered here is that of an RF tag/transponder that is illuminated by the radar and intends to covertly communicate with the radar or some other desired receiver while being masked by the ambient radar backscatter to avoid detection by an intercept receiver. Communication takes place on an intra-pulse (or individual pulse) basis to maximize the data rate. The impact of multipath, and its exploitation using time reversal to achieve spatio-temporal focusing, is considered. The processing gain for the destination receiver and intercept receiver are derived analytically and subsequently used to optimize the parameterization of communication symbol design. |
---|---|
ISSN: | 0733-8716 1558-0008 |
DOI: | 10.1109/JSAC.2011.111215 |