Loading…
Crossover regime for the diffusion of nanoparticles in polyethylene glycol solutions: influence of the depletion layer
The viscosity in soft matter systems is a scale dependent quantity. In polymer solutions the viscosity of nanoprobes of size R approaches the macroscopic viscosity when R exceeds the radius of gyration of the polymer, Rg. The nano to macroviscosity crossover occurs for R [similar] Rg. Here we analyz...
Saved in:
Published in: | Soft matter 2011-01, Vol.7 (16), p.7181-7186 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The viscosity in soft matter systems is a scale dependent quantity. In polymer solutions the viscosity of nanoprobes of size R approaches the macroscopic viscosity when R exceeds the radius of gyration of the polymer, Rg. The nano to macroviscosity crossover occurs for R [similar] Rg. Here we analyze diffusion in a polymer (polyethylene glycol) solution of nanoparticles in the crossover regime. We report a scale dependent diffusion coefficient in this regime due to non-uniform viscosity in the depletion layer around particles. The phenomenological scaling of the slow diffusion coefficient as a function of probe size is compared to the same scaling for macroscopic viscosity as a function of polymer size. |
---|---|
ISSN: | 1744-683X 1744-6848 |
DOI: | 10.1039/c0sm01357a |