Loading…

Iron oxyhydroxide nanoparticles formed by forced hydrolysis: dependence of phase composition on solution concentration

Nanoparticles of single-phase lepidocrocite (γ-FeOOH) and goethite (α-FeOOH) have been synthesized by forced hydrolysis of ferric nitrate with no other additives, and the particles have been characterized by XRD, FT-IR and TEM. At low Fe(NO(3))(3) concentrations the hydrolysis product is predominant...

Full description

Saved in:
Bibliographic Details
Published in:Physical chemistry chemical physics : PCCP 2011-11, Vol.13 (41), p.18523-18529
Main Authors: Fu, Dong, Keech, Peter G, Sun, Xueliang, Wren, J Clara
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nanoparticles of single-phase lepidocrocite (γ-FeOOH) and goethite (α-FeOOH) have been synthesized by forced hydrolysis of ferric nitrate with no other additives, and the particles have been characterized by XRD, FT-IR and TEM. At low Fe(NO(3))(3) concentrations the hydrolysis product is predominantly γ-FeOOH, while at high concentrations it is α-FeOOH. These particles are nanometers in size and fall within narrow particle size distributions. The dependence of the oxyhydoxide phase on ferric nitrate concentration is attributed to two thermodynamic factors, the enthalpy of formation and the surface enthalpy of hydration at the oxide-water interface (which is a function of surface area). Two potential mechanisms for the phase-specific growth are proposed that explain the solution concentration dependence of the phase formed. Three other common nanoscale particles (α-Fe(2)O(3), Fe(3)O(4) and γ-Fe(2)O(3)) have also been prepared by relatively simple thermal/chemical treatment of the γ-FeOOH nanoparticles.
ISSN:1463-9076
1463-9084
DOI:10.1039/c1cp20188c