Loading…
Crystal plasticity analysis of texture development in magnesium alloy during extrusion
The texture development mechanism during the extrusion of magnesium alloy is investigated by experimental observation and numerical analysis. First, we perform a finite element analysis of a full extrusion process using a phenomenological constitutive equation, and it is confirmed that the loading c...
Saved in:
Published in: | International journal of plasticity 2011-12, Vol.27 (12), p.1916-1935 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The texture development mechanism during the extrusion of magnesium alloy is investigated by experimental observation and numerical analysis. First, we perform a finite element analysis of a full extrusion process using a phenomenological constitutive equation, and it is confirmed that the loading condition of the extrusion process near the central axis of the billet is approximated by an equi-biaxial compression mode. Then, the equi-biaxial compression problem is adopted as a simplified boundary value problem to be solved using a crystal plasticity model to clarify the detailed texture development mechanism during the extrusion process. The crystal plasticity analysis of equi-biaxial compression successfully reproduces the texture development from an initial random texture to the final experimentally observed texture. The effects of the deformation modes (i.e. slip and twinning systems) implemented in the calculation and the reference stress ratio of basal to nonbasal slip systems on texture development are studied in detail. Finally, the mechanism of texture development during the extrusion process is discussed in terms of the lattice rotation caused by the activated slip systems. |
---|---|
ISSN: | 0749-6419 1879-2154 |
DOI: | 10.1016/j.ijplas.2011.02.007 |