Loading…
Accelerated Pavement Testing of Geocell-Reinforced Unpaved Roads over Weak Subgrade
Full-scale trafficking tests were conducted to evaluate the effect of novel polymeric-alloy geocell reinforcement on base courses for low-volume unpaved roads over weak subgrade. Three types of in-fill materials—crushed limestone (AB-3) aggregate, quarry waste (QW), and recycled asphalt pavement (RA...
Saved in:
Published in: | Transportation research record 2011-01, Vol.2204 (1), p.67-75 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Full-scale trafficking tests were conducted to evaluate the effect of novel polymeric-alloy geocell reinforcement on base courses for low-volume unpaved roads over weak subgrade. Three types of in-fill materials—crushed limestone (AB-3) aggregate, quarry waste (QW), and recycled asphalt pavement (RAP)—were used for the base courses over a weak subgrade layer consisting of A-7-6 clay. Four unpaved sections that included one unreinforced control section of AB-3 aggregate 30 cm thick and three 17-cm novel polymeric-alloy geocell-reinforced sections were tested under a single-axle dual-tire wheel loading. The road sections were exhumed and examined after the moving-wheel test. The benefits of novel polymeric-alloy geocell reinforcement were evaluated in relation to rut depths for a specific number of passes of the wheel load and the angle of stress distribution from the surface to the base course–subgrade interface. The test results demonstrated that the novel polymeric-alloy geocell reinforcement improved the performance of unpaved AB-3 and RAP sections. The QW section also showed better performance in relation to stress distribution angle. |
---|---|
ISSN: | 0361-1981 2169-4052 |
DOI: | 10.3141/2204-09 |