Loading…
Extending precolourings of circular cliques
Let G be a graph with circular chromatic number χc(G)=kq. Given P⊆V(G) where each component of G[P] is isomorphic to the circular clique Gk,q, suppose the vertices of P have been precoloured with a (k′,q′)-colouring. We examine under what conditions one can be assured the precolouring extends to the...
Saved in:
Published in: | Discrete mathematics 2012-01, Vol.312 (1), p.35-41 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c332t-1b6fcd372c99571d412fa961f511579368d2397f83719e7062c50534b74978cf3 |
---|---|
cites | cdi_FETCH-LOGICAL-c332t-1b6fcd372c99571d412fa961f511579368d2397f83719e7062c50534b74978cf3 |
container_end_page | 41 |
container_issue | 1 |
container_start_page | 35 |
container_title | Discrete mathematics |
container_volume | 312 |
creator | Brewster, Richard C. Noel, Jonathan A. |
description | Let G be a graph with circular chromatic number χc(G)=kq. Given P⊆V(G) where each component of G[P] is isomorphic to the circular clique Gk,q, suppose the vertices of P have been precoloured with a (k′,q′)-colouring. We examine under what conditions one can be assured the precolouring extends to the entire graph. We study sufficient conditions based on k′q′−kq as well as the distance between precoloured components of G[P]. In particular, we examine a conjecture of Albertson and West showing the conditions for extendibility are more complex than anticipated in their work. |
doi_str_mv | 10.1016/j.disc.2011.02.008 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_963885996</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0012365X11000562</els_id><sourcerecordid>963885996</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-1b6fcd372c99571d412fa961f511579368d2397f83719e7062c50534b74978cf3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wNXsXMiMuUnzAjdS6gMKbhS6C9M8JGU6qcmM6L83Q127Ohy45957PoSuATeAgd_tGhuyaQgGaDBpMJYnaAZSkJpL2JyiGcZAasrZ5hxd5LzDxXMqZ-h29T243ob-ozokZ2IXx1RMrqKvTEhm7NpUmS58ji5fojPfdtld_ekcvT-u3pbP9fr16WX5sK4NpWSoYcu9sVQQoxQTYBdAfKs4eAbAhKJcWkKV8JIKUE5gTgzDjC62YqGENJ7O0c1x7yHF6e6g96Wc67q2d3HMWpXPJVNF5ogcJ02KOSfn9SGFfZt-NGA9gdE7PYHRExiNiS5gSuj-GHKlw1dwSWcTXG-cDYXAoG0M_8V_AXO5an0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>963885996</pqid></control><display><type>article</type><title>Extending precolourings of circular cliques</title><source>Elsevier</source><creator>Brewster, Richard C. ; Noel, Jonathan A.</creator><creatorcontrib>Brewster, Richard C. ; Noel, Jonathan A.</creatorcontrib><description>Let G be a graph with circular chromatic number χc(G)=kq. Given P⊆V(G) where each component of G[P] is isomorphic to the circular clique Gk,q, suppose the vertices of P have been precoloured with a (k′,q′)-colouring. We examine under what conditions one can be assured the precolouring extends to the entire graph. We study sufficient conditions based on k′q′−kq as well as the distance between precoloured components of G[P]. In particular, we examine a conjecture of Albertson and West showing the conditions for extendibility are more complex than anticipated in their work.</description><identifier>ISSN: 0012-365X</identifier><identifier>EISSN: 1872-681X</identifier><identifier>DOI: 10.1016/j.disc.2011.02.008</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Circular colouring ; Colouring extension ; Graphs ; Mathematical analysis</subject><ispartof>Discrete mathematics, 2012-01, Vol.312 (1), p.35-41</ispartof><rights>2011 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c332t-1b6fcd372c99571d412fa961f511579368d2397f83719e7062c50534b74978cf3</citedby><cites>FETCH-LOGICAL-c332t-1b6fcd372c99571d412fa961f511579368d2397f83719e7062c50534b74978cf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Brewster, Richard C.</creatorcontrib><creatorcontrib>Noel, Jonathan A.</creatorcontrib><title>Extending precolourings of circular cliques</title><title>Discrete mathematics</title><description>Let G be a graph with circular chromatic number χc(G)=kq. Given P⊆V(G) where each component of G[P] is isomorphic to the circular clique Gk,q, suppose the vertices of P have been precoloured with a (k′,q′)-colouring. We examine under what conditions one can be assured the precolouring extends to the entire graph. We study sufficient conditions based on k′q′−kq as well as the distance between precoloured components of G[P]. In particular, we examine a conjecture of Albertson and West showing the conditions for extendibility are more complex than anticipated in their work.</description><subject>Circular colouring</subject><subject>Colouring extension</subject><subject>Graphs</subject><subject>Mathematical analysis</subject><issn>0012-365X</issn><issn>1872-681X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKt_wNXsXMiMuUnzAjdS6gMKbhS6C9M8JGU6qcmM6L83Q127Ohy45957PoSuATeAgd_tGhuyaQgGaDBpMJYnaAZSkJpL2JyiGcZAasrZ5hxd5LzDxXMqZ-h29T243ob-ozokZ2IXx1RMrqKvTEhm7NpUmS58ji5fojPfdtld_ekcvT-u3pbP9fr16WX5sK4NpWSoYcu9sVQQoxQTYBdAfKs4eAbAhKJcWkKV8JIKUE5gTgzDjC62YqGENJ7O0c1x7yHF6e6g96Wc67q2d3HMWpXPJVNF5ogcJ02KOSfn9SGFfZt-NGA9gdE7PYHRExiNiS5gSuj-GHKlw1dwSWcTXG-cDYXAoG0M_8V_AXO5an0</recordid><startdate>20120106</startdate><enddate>20120106</enddate><creator>Brewster, Richard C.</creator><creator>Noel, Jonathan A.</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120106</creationdate><title>Extending precolourings of circular cliques</title><author>Brewster, Richard C. ; Noel, Jonathan A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-1b6fcd372c99571d412fa961f511579368d2397f83719e7062c50534b74978cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Circular colouring</topic><topic>Colouring extension</topic><topic>Graphs</topic><topic>Mathematical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brewster, Richard C.</creatorcontrib><creatorcontrib>Noel, Jonathan A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Discrete mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brewster, Richard C.</au><au>Noel, Jonathan A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extending precolourings of circular cliques</atitle><jtitle>Discrete mathematics</jtitle><date>2012-01-06</date><risdate>2012</risdate><volume>312</volume><issue>1</issue><spage>35</spage><epage>41</epage><pages>35-41</pages><issn>0012-365X</issn><eissn>1872-681X</eissn><abstract>Let G be a graph with circular chromatic number χc(G)=kq. Given P⊆V(G) where each component of G[P] is isomorphic to the circular clique Gk,q, suppose the vertices of P have been precoloured with a (k′,q′)-colouring. We examine under what conditions one can be assured the precolouring extends to the entire graph. We study sufficient conditions based on k′q′−kq as well as the distance between precoloured components of G[P]. In particular, we examine a conjecture of Albertson and West showing the conditions for extendibility are more complex than anticipated in their work.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.disc.2011.02.008</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0012-365X |
ispartof | Discrete mathematics, 2012-01, Vol.312 (1), p.35-41 |
issn | 0012-365X 1872-681X |
language | eng |
recordid | cdi_proquest_miscellaneous_963885996 |
source | Elsevier |
subjects | Circular colouring Colouring extension Graphs Mathematical analysis |
title | Extending precolourings of circular cliques |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T00%3A11%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extending%20precolourings%20of%20circular%20cliques&rft.jtitle=Discrete%20mathematics&rft.au=Brewster,%20Richard%20C.&rft.date=2012-01-06&rft.volume=312&rft.issue=1&rft.spage=35&rft.epage=41&rft.pages=35-41&rft.issn=0012-365X&rft.eissn=1872-681X&rft_id=info:doi/10.1016/j.disc.2011.02.008&rft_dat=%3Cproquest_cross%3E963885996%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c332t-1b6fcd372c99571d412fa961f511579368d2397f83719e7062c50534b74978cf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=963885996&rft_id=info:pmid/&rfr_iscdi=true |