Loading…

Synchronization of coupled chaotic FitzHugh–Nagumo systems

► Simple single- and two-input control to synchronize locally Lipschitz FHN systems. ► Local asymptotic stability with states boundedness. ► Locally uniformly ultimately bounded stability in the presence of disturbances. ► Robustness against disturbances, bound to which is related with control param...

Full description

Saved in:
Bibliographic Details
Published in:Communications in nonlinear science & numerical simulation 2012-04, Vol.17 (4), p.1615-1627
Main Authors: Aqil, Muhammad, Hong, Keum-Shik, Jeong, Myung-Yung
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c335t-cd8ee34c851239e4bc294bce4699349e7aa6e240a94bd58aa8a7b91692c2cb73
cites cdi_FETCH-LOGICAL-c335t-cd8ee34c851239e4bc294bce4699349e7aa6e240a94bd58aa8a7b91692c2cb73
container_end_page 1627
container_issue 4
container_start_page 1615
container_title Communications in nonlinear science & numerical simulation
container_volume 17
creator Aqil, Muhammad
Hong, Keum-Shik
Jeong, Myung-Yung
description ► Simple single- and two-input control to synchronize locally Lipschitz FHN systems. ► Local asymptotic stability with states boundedness. ► Locally uniformly ultimately bounded stability in the presence of disturbances. ► Robustness against disturbances, bound to which is related with control parameters. ► Simplified selection of control parameters and constraint matrices using LMI tools. This paper addresses dynamic synchronization of two FitzHugh–Nagumo (FHN) systems coupled with gap junctions. All the states of the coupled chaotic system, treating either as single-input or two-input control system, are synchronized by stabilizing their error dynamics, using simplest and locally robust control laws. The local asymptotic stability, chosen by utilizing the local Lipschitz nonlinear property of the model to address additionally the non-failure of the achieved synchronization, is ensured by formulating the matrix inequalities on the basis of Lyapunov stability theory. In the presence of disturbances, it ensures the local uniform ultimate boundedness. Furthermore, the robustness of the proposed methods is ensured against bounded disturbances besides providing the upper bound on disturbances. To the best of our knowledge, this is the computationally simplest solution for synchronization of coupled FHN modeled systems along with unique advantages of less conservative local asymptotic stability of synchronization errors with robustness. Numerical simulations are carried out to successfully validate the proposed control strategies.
doi_str_mv 10.1016/j.cnsns.2011.09.028
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_963886699</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1007570411005363</els_id><sourcerecordid>963886699</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-cd8ee34c851239e4bc294bce4699349e7aa6e240a94bd58aa8a7b91692c2cb73</originalsourceid><addsrcrecordid>eNp9kL1OwzAQgC0EEqXwBCzZmBL8l9iWYEAVpUgVDHS3XOfaukrjYidI7cQ78IY8CS5lZrk7ne473X0IXRNcEEyq23Vh29jGgmJCCqwKTOUJGhApZC6o4KepxljkpcD8HF3EuMaJUiUfoLu3XWtXwbdubzrn28wvMuv7bQN1ZlfGd85mY9ftJ_1y9f359WKW_cZncRc72MRLdLYwTYSrvzxEs_HjbDTJp69Pz6OHaW4ZK7vc1hKAcStLQpkCPrdUpQC8UopxBcKYCijHJnXrUhojjZirdCC11M4FG6Kb49pt8O89xE5vXLTQNKYF30etKiZldVg2ROw4aYOPMcBCb4PbmLDTBOuDKb3Wv6b0wZTGSidTibo_UpB--HAQdLQOWgu1C2A7XXv3L_8Dps10vw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>963886699</pqid></control><display><type>article</type><title>Synchronization of coupled chaotic FitzHugh–Nagumo systems</title><source>ScienceDirect Journals</source><creator>Aqil, Muhammad ; Hong, Keum-Shik ; Jeong, Myung-Yung</creator><creatorcontrib>Aqil, Muhammad ; Hong, Keum-Shik ; Jeong, Myung-Yung</creatorcontrib><description>► Simple single- and two-input control to synchronize locally Lipschitz FHN systems. ► Local asymptotic stability with states boundedness. ► Locally uniformly ultimately bounded stability in the presence of disturbances. ► Robustness against disturbances, bound to which is related with control parameters. ► Simplified selection of control parameters and constraint matrices using LMI tools. This paper addresses dynamic synchronization of two FitzHugh–Nagumo (FHN) systems coupled with gap junctions. All the states of the coupled chaotic system, treating either as single-input or two-input control system, are synchronized by stabilizing their error dynamics, using simplest and locally robust control laws. The local asymptotic stability, chosen by utilizing the local Lipschitz nonlinear property of the model to address additionally the non-failure of the achieved synchronization, is ensured by formulating the matrix inequalities on the basis of Lyapunov stability theory. In the presence of disturbances, it ensures the local uniform ultimate boundedness. Furthermore, the robustness of the proposed methods is ensured against bounded disturbances besides providing the upper bound on disturbances. To the best of our knowledge, this is the computationally simplest solution for synchronization of coupled FHN modeled systems along with unique advantages of less conservative local asymptotic stability of synchronization errors with robustness. Numerical simulations are carried out to successfully validate the proposed control strategies.</description><identifier>ISSN: 1007-5704</identifier><identifier>EISSN: 1878-7274</identifier><identifier>DOI: 10.1016/j.cnsns.2011.09.028</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Asymptotic properties ; Chaos synchronization ; Disturbances ; Dynamical systems ; External electrical stimulation (EES) ; FitzHugh–Nagumo (FHN) equations ; Linear matrix inequality (LMI) ; Mathematical models ; Nonlinear dynamics ; Stability ; Synchronism ; Synchronization ; Uniform ultimate boundedness (UUB)</subject><ispartof>Communications in nonlinear science &amp; numerical simulation, 2012-04, Vol.17 (4), p.1615-1627</ispartof><rights>2011 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-cd8ee34c851239e4bc294bce4699349e7aa6e240a94bd58aa8a7b91692c2cb73</citedby><cites>FETCH-LOGICAL-c335t-cd8ee34c851239e4bc294bce4699349e7aa6e240a94bd58aa8a7b91692c2cb73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Aqil, Muhammad</creatorcontrib><creatorcontrib>Hong, Keum-Shik</creatorcontrib><creatorcontrib>Jeong, Myung-Yung</creatorcontrib><title>Synchronization of coupled chaotic FitzHugh–Nagumo systems</title><title>Communications in nonlinear science &amp; numerical simulation</title><description>► Simple single- and two-input control to synchronize locally Lipschitz FHN systems. ► Local asymptotic stability with states boundedness. ► Locally uniformly ultimately bounded stability in the presence of disturbances. ► Robustness against disturbances, bound to which is related with control parameters. ► Simplified selection of control parameters and constraint matrices using LMI tools. This paper addresses dynamic synchronization of two FitzHugh–Nagumo (FHN) systems coupled with gap junctions. All the states of the coupled chaotic system, treating either as single-input or two-input control system, are synchronized by stabilizing their error dynamics, using simplest and locally robust control laws. The local asymptotic stability, chosen by utilizing the local Lipschitz nonlinear property of the model to address additionally the non-failure of the achieved synchronization, is ensured by formulating the matrix inequalities on the basis of Lyapunov stability theory. In the presence of disturbances, it ensures the local uniform ultimate boundedness. Furthermore, the robustness of the proposed methods is ensured against bounded disturbances besides providing the upper bound on disturbances. To the best of our knowledge, this is the computationally simplest solution for synchronization of coupled FHN modeled systems along with unique advantages of less conservative local asymptotic stability of synchronization errors with robustness. Numerical simulations are carried out to successfully validate the proposed control strategies.</description><subject>Asymptotic properties</subject><subject>Chaos synchronization</subject><subject>Disturbances</subject><subject>Dynamical systems</subject><subject>External electrical stimulation (EES)</subject><subject>FitzHugh–Nagumo (FHN) equations</subject><subject>Linear matrix inequality (LMI)</subject><subject>Mathematical models</subject><subject>Nonlinear dynamics</subject><subject>Stability</subject><subject>Synchronism</subject><subject>Synchronization</subject><subject>Uniform ultimate boundedness (UUB)</subject><issn>1007-5704</issn><issn>1878-7274</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OwzAQgC0EEqXwBCzZmBL8l9iWYEAVpUgVDHS3XOfaukrjYidI7cQ78IY8CS5lZrk7ne473X0IXRNcEEyq23Vh29jGgmJCCqwKTOUJGhApZC6o4KepxljkpcD8HF3EuMaJUiUfoLu3XWtXwbdubzrn28wvMuv7bQN1ZlfGd85mY9ftJ_1y9f359WKW_cZncRc72MRLdLYwTYSrvzxEs_HjbDTJp69Pz6OHaW4ZK7vc1hKAcStLQpkCPrdUpQC8UopxBcKYCijHJnXrUhojjZirdCC11M4FG6Kb49pt8O89xE5vXLTQNKYF30etKiZldVg2ROw4aYOPMcBCb4PbmLDTBOuDKb3Wv6b0wZTGSidTibo_UpB--HAQdLQOWgu1C2A7XXv3L_8Dps10vw</recordid><startdate>20120401</startdate><enddate>20120401</enddate><creator>Aqil, Muhammad</creator><creator>Hong, Keum-Shik</creator><creator>Jeong, Myung-Yung</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120401</creationdate><title>Synchronization of coupled chaotic FitzHugh–Nagumo systems</title><author>Aqil, Muhammad ; Hong, Keum-Shik ; Jeong, Myung-Yung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-cd8ee34c851239e4bc294bce4699349e7aa6e240a94bd58aa8a7b91692c2cb73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Asymptotic properties</topic><topic>Chaos synchronization</topic><topic>Disturbances</topic><topic>Dynamical systems</topic><topic>External electrical stimulation (EES)</topic><topic>FitzHugh–Nagumo (FHN) equations</topic><topic>Linear matrix inequality (LMI)</topic><topic>Mathematical models</topic><topic>Nonlinear dynamics</topic><topic>Stability</topic><topic>Synchronism</topic><topic>Synchronization</topic><topic>Uniform ultimate boundedness (UUB)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aqil, Muhammad</creatorcontrib><creatorcontrib>Hong, Keum-Shik</creatorcontrib><creatorcontrib>Jeong, Myung-Yung</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Communications in nonlinear science &amp; numerical simulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aqil, Muhammad</au><au>Hong, Keum-Shik</au><au>Jeong, Myung-Yung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synchronization of coupled chaotic FitzHugh–Nagumo systems</atitle><jtitle>Communications in nonlinear science &amp; numerical simulation</jtitle><date>2012-04-01</date><risdate>2012</risdate><volume>17</volume><issue>4</issue><spage>1615</spage><epage>1627</epage><pages>1615-1627</pages><issn>1007-5704</issn><eissn>1878-7274</eissn><abstract>► Simple single- and two-input control to synchronize locally Lipschitz FHN systems. ► Local asymptotic stability with states boundedness. ► Locally uniformly ultimately bounded stability in the presence of disturbances. ► Robustness against disturbances, bound to which is related with control parameters. ► Simplified selection of control parameters and constraint matrices using LMI tools. This paper addresses dynamic synchronization of two FitzHugh–Nagumo (FHN) systems coupled with gap junctions. All the states of the coupled chaotic system, treating either as single-input or two-input control system, are synchronized by stabilizing their error dynamics, using simplest and locally robust control laws. The local asymptotic stability, chosen by utilizing the local Lipschitz nonlinear property of the model to address additionally the non-failure of the achieved synchronization, is ensured by formulating the matrix inequalities on the basis of Lyapunov stability theory. In the presence of disturbances, it ensures the local uniform ultimate boundedness. Furthermore, the robustness of the proposed methods is ensured against bounded disturbances besides providing the upper bound on disturbances. To the best of our knowledge, this is the computationally simplest solution for synchronization of coupled FHN modeled systems along with unique advantages of less conservative local asymptotic stability of synchronization errors with robustness. Numerical simulations are carried out to successfully validate the proposed control strategies.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cnsns.2011.09.028</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1007-5704
ispartof Communications in nonlinear science & numerical simulation, 2012-04, Vol.17 (4), p.1615-1627
issn 1007-5704
1878-7274
language eng
recordid cdi_proquest_miscellaneous_963886699
source ScienceDirect Journals
subjects Asymptotic properties
Chaos synchronization
Disturbances
Dynamical systems
External electrical stimulation (EES)
FitzHugh–Nagumo (FHN) equations
Linear matrix inequality (LMI)
Mathematical models
Nonlinear dynamics
Stability
Synchronism
Synchronization
Uniform ultimate boundedness (UUB)
title Synchronization of coupled chaotic FitzHugh–Nagumo systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T10%3A24%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synchronization%20of%20coupled%20chaotic%20FitzHugh%E2%80%93Nagumo%20systems&rft.jtitle=Communications%20in%20nonlinear%20science%20&%20numerical%20simulation&rft.au=Aqil,%20Muhammad&rft.date=2012-04-01&rft.volume=17&rft.issue=4&rft.spage=1615&rft.epage=1627&rft.pages=1615-1627&rft.issn=1007-5704&rft.eissn=1878-7274&rft_id=info:doi/10.1016/j.cnsns.2011.09.028&rft_dat=%3Cproquest_cross%3E963886699%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c335t-cd8ee34c851239e4bc294bce4699349e7aa6e240a94bd58aa8a7b91692c2cb73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=963886699&rft_id=info:pmid/&rfr_iscdi=true