Loading…

Subwavelength surface waves with zero diffraction

We identified nanostructured devices sustaining out-of-plane nondiffracting beams with near-grazing propagation and a transverse beamwidth clearly surpassing the diffraction limit of half a wavelength. This type of device consists of a planar multilayered metal-dielectric structure with a finite num...

Full description

Saved in:
Bibliographic Details
Published in:Journal of nanophotonics 2011-01, Vol.5 (1), p.051801-051801
Main Authors: Miret, Juan J, Pastor Calle, David, Zapata-Rodriguez, Carlos J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We identified nanostructured devices sustaining out-of-plane nondiffracting beams with near-grazing propagation and a transverse beamwidth clearly surpassing the diffraction limit of half a wavelength. This type of device consists of a planar multilayered metal-dielectric structure with a finite number of films deposited on a solid transparent substrate. We assumed that the nondiffracting beam is launched from the substrate. The construction of the subwavelength diffraction-free beam is attended by plane waves which are resonantly transmitted through the stratified medium. Therefore, light confinement and wave amplification occurs simultaneously. We performed an optimization process concerning the layers width as free parameters in order to reach the most efficient optical resonances with uniform transmission. The value of the propagation constant and the focal placement are initially arbitrary, which can be chosen according to its practical realization. Possible applications include optical trapping, biosensing, and nonlinear optics.
ISSN:1934-2608
1934-2608
DOI:10.1117/1.3583989