Loading…
Optical properties of microstructured surface-grown and transferred organic nanofibers
Specially designed surface micro- and nanostructures allow one to steer the bottom up self-organized growth of crystalline nanoaggregates from wide bandgap organic molecules, which possess extraordinary optoelectronic properties. Polarized light-emitting para-hexaphenylene nanofiber arrays exemplify...
Saved in:
Published in: | Journal of nanophotonics 2011-01, Vol.5 (1), p.051701-051701 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Specially designed surface micro- and nanostructures allow one to steer the bottom up self-organized growth of crystalline nanoaggregates from wide bandgap organic molecules, which possess extraordinary optoelectronic properties. Polarized light-emitting para-hexaphenylene nanofiber arrays exemplify such "self-growing" nanophotonic devices. The methodology behind this growth is an alternative to transfer of nanofiber arrays from specific growth substrates onto device platforms. We compared the optical properties of transferred and
grown nanofibers in terms of polarization function and emission homogeneity and also studied the temperature dependence of the emission spectra of transferred nanofiber arrays. Both types of nanofibers show the same spatial emission characteristics along their long axes and also the same polarization ratio. However, in nanofiber arrays, the polarization ratio decreases in the case of structured surface-grown nanofibers since the mutual orientation of the nanofibers is less perfect than for transferred fibers. |
---|---|
ISSN: | 1934-2608 1934-2608 |
DOI: | 10.1117/1.3574401 |