Loading…
New insights into the Belousov-Zhabotinskii reaction derived from EQCM measurements at a gold electrode
Electrochemical quartz crystal microbalance experiments were used to study the classical Belousov-Zhabotinskii (BZ) homogeneous oscillating system. This system involves 2 × 10(-3) M Ce(III), 0.28 M malonic acid and 0.063 M bromate as the main initial components in 1 M sulfuric acid solution. The gol...
Saved in:
Published in: | Physical chemistry chemical physics : PCCP 2011-03, Vol.13 (12), p.5373-5382 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Electrochemical quartz crystal microbalance experiments were used to study the classical Belousov-Zhabotinskii (BZ) homogeneous oscillating system. This system involves 2 × 10(-3) M Ce(III), 0.28 M malonic acid and 0.063 M bromate as the main initial components in 1 M sulfuric acid solution. The gold-evaporated electrodes on a 10 MHz AT-cut quartz crystal were used for potentiometric and amperometric studies while the changes in crystal frequency provided mass data. Under open-circuit conditions, during the BZ reaction, oscillations of the gold electrode potential in the range ca. 0.8 to 1.07 V (SCE) with a period about 80 s occurred. They were accompanied by periodic 10-15 ng [i.e. ca. 45-70 ng cm(-2)] changes in the electrode mass. At more positive potentials a decrease in electrode mass occurred, while the mass increased at more negative potentials. At a constant applied electrode potential, corresponding to either the upper or the lower potential limit attained under open-circuit conditions, periodic pulses of cathodic current occurred and were accompanied by mass changes. A continuous decrease in the electrode mass occurred at 1.06 V. A detailed examination of the gold electrode behavior in the solutions containing individual components of the system using cyclic voltammetry and quartz crystal microgravimetry provided the information needed to interpret the mass changes that occur in the complete system. No significant changes in the electrode mass occurred in sulfuric acid solution in the potential range where current and mass oscillations take place in the full BZ reaction solution. The same result was found in sulfuric acid solutions containing either Ce(III) or malonic acid. Dissolution of gold occurred in a sulfuric acid solution containing bromate or bromide ions. Adsorption of bromide ions on gold electrode occurred in Br(-)-containing sulfuric acid solution at more negative potentials. In the BZ system, dissolution of gold in the presence of oxidizing (bromate) and complexing (bromide) species causes the decrease in the electrode mass that accompanies the positive potential jump under open-circuit conditions, or the current pulse that occurs at more negative applied constant potentials. Cathodic current pulses occurring at a constant electrode potential (either 0.8 or 1.06 V) are associated with the reduction of Ce(IV) formed as a result of periodic homogeneous oxidation of Ce(III) by bromate. Bromide ions formed in the course of the BZ reacti |
---|---|
ISSN: | 1463-9076 1463-9084 |
DOI: | 10.1039/c0cp02551h |