Loading…

Weed identification using an automated active shape matching (AASM) technique

Weed identification and control is a challenge for intercultural operations in agriculture. As an alternative to chemical pest control, a smart weed identification technique followed by mechanical weed control system could be developed. The proposed smart identification technique works on the concep...

Full description

Saved in:
Bibliographic Details
Published in:Biosystems engineering 2011-12, Vol.110 (4), p.450-457
Main Authors: Swain, Kishore C., Nørremark, Michael, Jørgensen, Rasmus N., Midtiby, Henrik S., Green, Ole
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c413t-cb748338658b74cb40eca83c97a4ab3e9815134843de0d9e6acf366577fc4eec3
cites cdi_FETCH-LOGICAL-c413t-cb748338658b74cb40eca83c97a4ab3e9815134843de0d9e6acf366577fc4eec3
container_end_page 457
container_issue 4
container_start_page 450
container_title Biosystems engineering
container_volume 110
creator Swain, Kishore C.
Nørremark, Michael
Jørgensen, Rasmus N.
Midtiby, Henrik S.
Green, Ole
description Weed identification and control is a challenge for intercultural operations in agriculture. As an alternative to chemical pest control, a smart weed identification technique followed by mechanical weed control system could be developed. The proposed smart identification technique works on the concept of ‘active shape modelling’ to identify weed and crop plants based on their morphology. The automated active shape matching system (AASM) technique consisted of, i) a Pixelink camera ii) an LTI (Lehrstuhlfuer technische informatik) image processing library, iii) a laptop pc with the Linux OS. A 2-leaf growth stage model for Solanum nigrum L. (nightshade) is generated from 32 segmented training images in Matlab software environment. Using the AASM algorithm, the leaf model was aligned and placed at the centre of the target plant and a model deformation process carried out. The parameters used for model deformation were estimated, updated and an improved model was compared to the target plant shape to obtain the best fit. Around 90% of the nightshade plants were identified correctly with AASM. The time required for identifying target plant as a nightshade was approximately 0.053 s and a non-identification process required 0.062 s for eight iterations with the Linux platform used. ► Automated active shape model (AASM) for weed and plant leaf identification. ► 2-leaf growth stage model of nightshade. ► Time for identify a nightshade is 0.053 s. ► Time for non-identification process 0.062 s with eight iterations.
doi_str_mv 10.1016/j.biosystemseng.2011.09.011
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_963902459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1537511011001656</els_id><sourcerecordid>963902459</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-cb748338658b74cb40eca83c97a4ab3e9815134843de0d9e6acf366577fc4eec3</originalsourceid><addsrcrecordid>eNqNkE1LAzEQhhdRsH78BhdE1EPXpEl2N3gq4hdUPKh4DNPZ2TalzdYkFfrvTakUvHl6h_DkneHJsnPOCs54eTMrxrYL6xBpEchNigHjvGC6SLGX9bgSVV_xgd7fzZwdZkchzBjjqpJlL3v5JGpy25CLtrUI0XYuXwXrJjm4HFaxW0BMBGC035SHKSwpT0843SBXw-Hby3UeCafOfq3oJDtoYR7o9DePs4-H-_e7p_7o9fH5bjjqo-Qi9nFcyVqIulR1mnAsGSHUAnUFEsaCdM0VF7KWoiHWaCoBW1GWqqpalEQojrPLbe_Sd2ltiGZhA9J8Do66VTC6FJoNpNKJvN2S6LsQPLVm6e0C_NpwZjYOzcz8cWg2Dg3TJkX6ffG7BwLCvPXg0IZdxUBWlZJSJe5sy7XQGZj4xHy8pSLJGBPJ_KbpfktQ0vJtyZuAlhxSYz1hNE1n_3XRD7XumOc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>963902459</pqid></control><display><type>article</type><title>Weed identification using an automated active shape matching (AASM) technique</title><source>ScienceDirect Freedom Collection</source><creator>Swain, Kishore C. ; Nørremark, Michael ; Jørgensen, Rasmus N. ; Midtiby, Henrik S. ; Green, Ole</creator><creatorcontrib>Swain, Kishore C. ; Nørremark, Michael ; Jørgensen, Rasmus N. ; Midtiby, Henrik S. ; Green, Ole</creatorcontrib><description>Weed identification and control is a challenge for intercultural operations in agriculture. As an alternative to chemical pest control, a smart weed identification technique followed by mechanical weed control system could be developed. The proposed smart identification technique works on the concept of ‘active shape modelling’ to identify weed and crop plants based on their morphology. The automated active shape matching system (AASM) technique consisted of, i) a Pixelink camera ii) an LTI (Lehrstuhlfuer technische informatik) image processing library, iii) a laptop pc with the Linux OS. A 2-leaf growth stage model for Solanum nigrum L. (nightshade) is generated from 32 segmented training images in Matlab software environment. Using the AASM algorithm, the leaf model was aligned and placed at the centre of the target plant and a model deformation process carried out. The parameters used for model deformation were estimated, updated and an improved model was compared to the target plant shape to obtain the best fit. Around 90% of the nightshade plants were identified correctly with AASM. The time required for identifying target plant as a nightshade was approximately 0.053 s and a non-identification process required 0.062 s for eight iterations with the Linux platform used. ► Automated active shape model (AASM) for weed and plant leaf identification. ► 2-leaf growth stage model of nightshade. ► Time for identify a nightshade is 0.053 s. ► Time for non-identification process 0.062 s with eight iterations.</description><identifier>ISSN: 1537-5110</identifier><identifier>EISSN: 1537-5129</identifier><identifier>DOI: 10.1016/j.biosystemseng.2011.09.011</identifier><identifier>CODEN: BEINBJ</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Active control ; Agricultural machinery and engineering ; Agronomy. Soil science and plant productions ; Biological and medical sciences ; crops ; deformation ; Fundamental and applied biological sciences. Psychology ; Generalities. Biometrics, experimentation. Remote sensing ; image analysis ; leaves ; Matching ; Matlab ; mechanical weed control ; Parasitic plants. Weeds ; pest control ; Phytopathology. Animal pests. Plant and forest protection ; Plants (organisms) ; Solanum nigrum ; UNIX (operating system) ; Weeds ; Windows (computer programs)</subject><ispartof>Biosystems engineering, 2011-12, Vol.110 (4), p.450-457</ispartof><rights>2011 IAgrE</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-cb748338658b74cb40eca83c97a4ab3e9815134843de0d9e6acf366577fc4eec3</citedby><cites>FETCH-LOGICAL-c413t-cb748338658b74cb40eca83c97a4ab3e9815134843de0d9e6acf366577fc4eec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24775445$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Swain, Kishore C.</creatorcontrib><creatorcontrib>Nørremark, Michael</creatorcontrib><creatorcontrib>Jørgensen, Rasmus N.</creatorcontrib><creatorcontrib>Midtiby, Henrik S.</creatorcontrib><creatorcontrib>Green, Ole</creatorcontrib><title>Weed identification using an automated active shape matching (AASM) technique</title><title>Biosystems engineering</title><description>Weed identification and control is a challenge for intercultural operations in agriculture. As an alternative to chemical pest control, a smart weed identification technique followed by mechanical weed control system could be developed. The proposed smart identification technique works on the concept of ‘active shape modelling’ to identify weed and crop plants based on their morphology. The automated active shape matching system (AASM) technique consisted of, i) a Pixelink camera ii) an LTI (Lehrstuhlfuer technische informatik) image processing library, iii) a laptop pc with the Linux OS. A 2-leaf growth stage model for Solanum nigrum L. (nightshade) is generated from 32 segmented training images in Matlab software environment. Using the AASM algorithm, the leaf model was aligned and placed at the centre of the target plant and a model deformation process carried out. The parameters used for model deformation were estimated, updated and an improved model was compared to the target plant shape to obtain the best fit. Around 90% of the nightshade plants were identified correctly with AASM. The time required for identifying target plant as a nightshade was approximately 0.053 s and a non-identification process required 0.062 s for eight iterations with the Linux platform used. ► Automated active shape model (AASM) for weed and plant leaf identification. ► 2-leaf growth stage model of nightshade. ► Time for identify a nightshade is 0.053 s. ► Time for non-identification process 0.062 s with eight iterations.</description><subject>Active control</subject><subject>Agricultural machinery and engineering</subject><subject>Agronomy. Soil science and plant productions</subject><subject>Biological and medical sciences</subject><subject>crops</subject><subject>deformation</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Generalities. Biometrics, experimentation. Remote sensing</subject><subject>image analysis</subject><subject>leaves</subject><subject>Matching</subject><subject>Matlab</subject><subject>mechanical weed control</subject><subject>Parasitic plants. Weeds</subject><subject>pest control</subject><subject>Phytopathology. Animal pests. Plant and forest protection</subject><subject>Plants (organisms)</subject><subject>Solanum nigrum</subject><subject>UNIX (operating system)</subject><subject>Weeds</subject><subject>Windows (computer programs)</subject><issn>1537-5110</issn><issn>1537-5129</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkE1LAzEQhhdRsH78BhdE1EPXpEl2N3gq4hdUPKh4DNPZ2TalzdYkFfrvTakUvHl6h_DkneHJsnPOCs54eTMrxrYL6xBpEchNigHjvGC6SLGX9bgSVV_xgd7fzZwdZkchzBjjqpJlL3v5JGpy25CLtrUI0XYuXwXrJjm4HFaxW0BMBGC035SHKSwpT0843SBXw-Hby3UeCafOfq3oJDtoYR7o9DePs4-H-_e7p_7o9fH5bjjqo-Qi9nFcyVqIulR1mnAsGSHUAnUFEsaCdM0VF7KWoiHWaCoBW1GWqqpalEQojrPLbe_Sd2ltiGZhA9J8Do66VTC6FJoNpNKJvN2S6LsQPLVm6e0C_NpwZjYOzcz8cWg2Dg3TJkX6ffG7BwLCvPXg0IZdxUBWlZJSJe5sy7XQGZj4xHy8pSLJGBPJ_KbpfktQ0vJtyZuAlhxSYz1hNE1n_3XRD7XumOc</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Swain, Kishore C.</creator><creator>Nørremark, Michael</creator><creator>Jørgensen, Rasmus N.</creator><creator>Midtiby, Henrik S.</creator><creator>Green, Ole</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20111201</creationdate><title>Weed identification using an automated active shape matching (AASM) technique</title><author>Swain, Kishore C. ; Nørremark, Michael ; Jørgensen, Rasmus N. ; Midtiby, Henrik S. ; Green, Ole</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-cb748338658b74cb40eca83c97a4ab3e9815134843de0d9e6acf366577fc4eec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Active control</topic><topic>Agricultural machinery and engineering</topic><topic>Agronomy. Soil science and plant productions</topic><topic>Biological and medical sciences</topic><topic>crops</topic><topic>deformation</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Generalities. Biometrics, experimentation. Remote sensing</topic><topic>image analysis</topic><topic>leaves</topic><topic>Matching</topic><topic>Matlab</topic><topic>mechanical weed control</topic><topic>Parasitic plants. Weeds</topic><topic>pest control</topic><topic>Phytopathology. Animal pests. Plant and forest protection</topic><topic>Plants (organisms)</topic><topic>Solanum nigrum</topic><topic>UNIX (operating system)</topic><topic>Weeds</topic><topic>Windows (computer programs)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Swain, Kishore C.</creatorcontrib><creatorcontrib>Nørremark, Michael</creatorcontrib><creatorcontrib>Jørgensen, Rasmus N.</creatorcontrib><creatorcontrib>Midtiby, Henrik S.</creatorcontrib><creatorcontrib>Green, Ole</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Biosystems engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Swain, Kishore C.</au><au>Nørremark, Michael</au><au>Jørgensen, Rasmus N.</au><au>Midtiby, Henrik S.</au><au>Green, Ole</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weed identification using an automated active shape matching (AASM) technique</atitle><jtitle>Biosystems engineering</jtitle><date>2011-12-01</date><risdate>2011</risdate><volume>110</volume><issue>4</issue><spage>450</spage><epage>457</epage><pages>450-457</pages><issn>1537-5110</issn><eissn>1537-5129</eissn><coden>BEINBJ</coden><abstract>Weed identification and control is a challenge for intercultural operations in agriculture. As an alternative to chemical pest control, a smart weed identification technique followed by mechanical weed control system could be developed. The proposed smart identification technique works on the concept of ‘active shape modelling’ to identify weed and crop plants based on their morphology. The automated active shape matching system (AASM) technique consisted of, i) a Pixelink camera ii) an LTI (Lehrstuhlfuer technische informatik) image processing library, iii) a laptop pc with the Linux OS. A 2-leaf growth stage model for Solanum nigrum L. (nightshade) is generated from 32 segmented training images in Matlab software environment. Using the AASM algorithm, the leaf model was aligned and placed at the centre of the target plant and a model deformation process carried out. The parameters used for model deformation were estimated, updated and an improved model was compared to the target plant shape to obtain the best fit. Around 90% of the nightshade plants were identified correctly with AASM. The time required for identifying target plant as a nightshade was approximately 0.053 s and a non-identification process required 0.062 s for eight iterations with the Linux platform used. ► Automated active shape model (AASM) for weed and plant leaf identification. ► 2-leaf growth stage model of nightshade. ► Time for identify a nightshade is 0.053 s. ► Time for non-identification process 0.062 s with eight iterations.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.biosystemseng.2011.09.011</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1537-5110
ispartof Biosystems engineering, 2011-12, Vol.110 (4), p.450-457
issn 1537-5110
1537-5129
language eng
recordid cdi_proquest_miscellaneous_963902459
source ScienceDirect Freedom Collection
subjects Active control
Agricultural machinery and engineering
Agronomy. Soil science and plant productions
Biological and medical sciences
crops
deformation
Fundamental and applied biological sciences. Psychology
Generalities. Biometrics, experimentation. Remote sensing
image analysis
leaves
Matching
Matlab
mechanical weed control
Parasitic plants. Weeds
pest control
Phytopathology. Animal pests. Plant and forest protection
Plants (organisms)
Solanum nigrum
UNIX (operating system)
Weeds
Windows (computer programs)
title Weed identification using an automated active shape matching (AASM) technique
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T20%3A38%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weed%20identification%20using%20an%20automated%20active%20shape%20matching%20(AASM)%20technique&rft.jtitle=Biosystems%20engineering&rft.au=Swain,%20Kishore%20C.&rft.date=2011-12-01&rft.volume=110&rft.issue=4&rft.spage=450&rft.epage=457&rft.pages=450-457&rft.issn=1537-5110&rft.eissn=1537-5129&rft.coden=BEINBJ&rft_id=info:doi/10.1016/j.biosystemseng.2011.09.011&rft_dat=%3Cproquest_cross%3E963902459%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c413t-cb748338658b74cb40eca83c97a4ab3e9815134843de0d9e6acf366577fc4eec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=963902459&rft_id=info:pmid/&rfr_iscdi=true