Loading…
Phosphate Transporter Promoter from Arabidopsis thaliana AtPHT1;4 Gene Drives Preferential Gene Expression in Transgenic Maize Roots Under Phosphorus Starvation
Phosphorus (P) stress responsive genes have been identified and characterized, including the high-affinity phosphate transporter AtPHT1;4 from Arabidopsis thaliana. This gene encodes a membrane protein that is primarily expressed in roots under phosphorus deficiency. A 2.3-kb promoter region from At...
Saved in:
Published in: | Plant molecular biology reporter 2010-12, Vol.28 (4), p.717-723 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Phosphorus (P) stress responsive genes have been identified and characterized, including the high-affinity phosphate transporter AtPHT1;4 from Arabidopsis thaliana. This gene encodes a membrane protein that is primarily expressed in roots under phosphorus deficiency. A 2.3-kb promoter region from AtPHT1;4 has been fused with the β-glucuronidase (GUS) encoding gene and introduced into maize via biolistic bombardment to evaluate its spatiotemporal activity in a heterologous system. AtPHT1;4::GUS expression is detected preferentially in transgenic maize roots under P deficiency. Further analysis of transgenic plants has also revealed that GUS activity is higher in roots than in leaves by about sixfold. These results demonstrate the ability of AtPHT1;4 promoter to direct expression of the reporter gene in a monocot root system under P stress. This property of AtPHT1;4 promoter makes it useful to engineer maize plants to modify the soil's rhizosphere and increase efficiency of P acquisition under P stress conditions. |
---|---|
ISSN: | 0735-9640 1572-9818 |
DOI: | 10.1007/s11105-010-0199-8 |