Loading…
Notch-1 signaling is lost in prostate adenocarcinoma and promotes PTEN gene expression
Prostate tumorigenesis is associated with loss of PTEN gene expression. We and others have recently reported that PTEN is regulated by Notch‐1 signaling. Herein, we tested the hypothesis that alterations of the Notch‐1 signaling pathway are present in human prostate adenocarcinoma and that Notch‐1 s...
Saved in:
Published in: | Journal of cellular biochemistry 2009-08, Vol.107 (5), p.992-1001 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Prostate tumorigenesis is associated with loss of PTEN gene expression. We and others have recently reported that PTEN is regulated by Notch‐1 signaling. Herein, we tested the hypothesis that alterations of the Notch‐1 signaling pathway are present in human prostate adenocarcinoma and that Notch‐1 signaling regulates PTEN gene expression in prostate cells. Prostate adenocarcinoma cases were examined by immunohistochemistry for ligand cleaved (activated) Notch‐1 protein. Tumor foci exhibited little cleaved Notch‐1 protein, but expression was observed in benign tissue. Both tumor and benign tissue expressed total (uncleaved) Notch‐1. Reduced Hey‐1 expression was seen in tumor foci but not in benign tissue, confirming loss of Notch‐1 signaling in prostate adenocarcinoma. Retroviral expression of constitutively active Notch‐1 in human prostate tumor cell lines resulted in increased PTEN gene expression. Incubation of prostate cell lines with the Notch‐1 ligand, Delta, resulted in increased PTEN expression indicating that endogenous Notch‐1 regulates PTEN gene expression. Chromatin immunoprecipitation demonstrated that CBF‐1 was bound to the PTEN promoter. These data collectively indicate that defects in Notch‐1 signaling may play a role in human prostate tumor formation in part via a mechanism that involves regulation of the PTEN tumor suppressor gene. J. Cell. Biochem. 107: 992–1001, 2009. © 2009 Wiley‐Liss, Inc. |
---|---|
ISSN: | 0730-2312 1097-4644 1097-4644 |
DOI: | 10.1002/jcb.22199 |