Loading…

Using overlapping sonobuoy data from the Ross Sea to construct a 2D deep crustal velocity model

Sonobuoys provide an alternative to using long streamers while conducting multi-channel seismic (MCS) studies, in order to provide deeper velocity control. We present analysis and modeling techniques for interpreting the sonobuoy data and illustrate the method with ten overlapping sonobuoys collecte...

Full description

Saved in:
Bibliographic Details
Published in:Marine geophysical researches 2012-03, Vol.33 (1), p.17-32
Main Authors: Selvans, M. M., Clayton, R. W., Stock, J. M., Granot, R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a413t-4cfe1728b088dacd2db4bed9f1e5739866507f518385a45b4cef97dab18287423
cites cdi_FETCH-LOGICAL-a413t-4cfe1728b088dacd2db4bed9f1e5739866507f518385a45b4cef97dab18287423
container_end_page 32
container_issue 1
container_start_page 17
container_title Marine geophysical researches
container_volume 33
creator Selvans, M. M.
Clayton, R. W.
Stock, J. M.
Granot, R.
description Sonobuoys provide an alternative to using long streamers while conducting multi-channel seismic (MCS) studies, in order to provide deeper velocity control. We present analysis and modeling techniques for interpreting the sonobuoy data and illustrate the method with ten overlapping sonobuoys collected in the Ross Sea, offshore from Antarctica. We demonstrate the importance of using the MCS data to correct for ocean currents and changes in ship navigation, which is required before using standard methods for obtaining a 1D velocity profile from each sonobuoy. We verify our 1D velocity models using acoustic finite-difference (FD) modeling and by performing depth migration on the data, and demonstrate the usefulness of FD modeling for tying interval velocities to the shallow crust imaged using MCS data. Finally, we show how overlapping sonobuoys along an MCS line can be used to construct a 2D velocity model of the crust. The velocity model reveals a thin crust (5.5 ± 0.4 km) at the boundary between the Adare and Northern Basins, and implies that the crustal structure of the Northern Basin may be more similar to that of the oceanic crust in the Adare Basin than to the stretched continental crust further south in the Ross Sea.
doi_str_mv 10.1007/s11001-011-9143-z
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_968171885</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>968171885</sourcerecordid><originalsourceid>FETCH-LOGICAL-a413t-4cfe1728b088dacd2db4bed9f1e5739866507f518385a45b4cef97dab18287423</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK5-AG_Bi6dqJm2a9CjrXxAEdc8hTafrLt2mJqmw--nNsoIgeJoZ-L3HvEfIObArYExeB0gDMgaQVVDk2faATEDIPGNCwSGZMMZFlvNcHJOTEFYs3apiE6LnYdkvqPtC35lh2O3B9a4e3YY2Jhraerem8QPpqwuBvqGh0VHr-hD9aCM1lN_SBnGg1o8hmo5-YefsMm7o2jXYnZKj1nQBz37mlMzv795nj9nzy8PT7OY5MwXkMStsiyC5qplSjbENb-qixqZqAVOISpWlYLIVoHIlTCHqwmJbycbUoLiSBc-n5HLvO3j3OWKIer0MFrvO9OjGoKtSgQSlRCIv_pArN_o-PacrLiUIXpYJgj1kfYrtsdWDX66N32hgele43heuU-F6V7jeJg3fa0Ji-wX6X-P_Rd9284OH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>927715266</pqid></control><display><type>article</type><title>Using overlapping sonobuoy data from the Ross Sea to construct a 2D deep crustal velocity model</title><source>Springer Nature</source><creator>Selvans, M. M. ; Clayton, R. W. ; Stock, J. M. ; Granot, R.</creator><creatorcontrib>Selvans, M. M. ; Clayton, R. W. ; Stock, J. M. ; Granot, R.</creatorcontrib><description>Sonobuoys provide an alternative to using long streamers while conducting multi-channel seismic (MCS) studies, in order to provide deeper velocity control. We present analysis and modeling techniques for interpreting the sonobuoy data and illustrate the method with ten overlapping sonobuoys collected in the Ross Sea, offshore from Antarctica. We demonstrate the importance of using the MCS data to correct for ocean currents and changes in ship navigation, which is required before using standard methods for obtaining a 1D velocity profile from each sonobuoy. We verify our 1D velocity models using acoustic finite-difference (FD) modeling and by performing depth migration on the data, and demonstrate the usefulness of FD modeling for tying interval velocities to the shallow crust imaged using MCS data. Finally, we show how overlapping sonobuoys along an MCS line can be used to construct a 2D velocity model of the crust. The velocity model reveals a thin crust (5.5 ± 0.4 km) at the boundary between the Adare and Northern Basins, and implies that the crustal structure of the Northern Basin may be more similar to that of the oceanic crust in the Adare Basin than to the stretched continental crust further south in the Ross Sea.</description><identifier>ISSN: 0025-3235</identifier><identifier>EISSN: 1573-0581</identifier><identifier>DOI: 10.1007/s11001-011-9143-z</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Continental crust ; Earth and Environmental Science ; Earth Sciences ; Geophysics ; Geophysics/Geodesy ; Marine ; Ocean currents ; Oceanic crust ; Oceanographic instruments ; Oceanography ; Offshore Engineering ; Original Research Paper ; Seismology ; Velocity</subject><ispartof>Marine geophysical researches, 2012-03, Vol.33 (1), p.17-32</ispartof><rights>Springer Science+Business Media B.V. 2011</rights><rights>Springer Science+Business Media B.V. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a413t-4cfe1728b088dacd2db4bed9f1e5739866507f518385a45b4cef97dab18287423</citedby><cites>FETCH-LOGICAL-a413t-4cfe1728b088dacd2db4bed9f1e5739866507f518385a45b4cef97dab18287423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Selvans, M. M.</creatorcontrib><creatorcontrib>Clayton, R. W.</creatorcontrib><creatorcontrib>Stock, J. M.</creatorcontrib><creatorcontrib>Granot, R.</creatorcontrib><title>Using overlapping sonobuoy data from the Ross Sea to construct a 2D deep crustal velocity model</title><title>Marine geophysical researches</title><addtitle>Mar Geophys Res</addtitle><description>Sonobuoys provide an alternative to using long streamers while conducting multi-channel seismic (MCS) studies, in order to provide deeper velocity control. We present analysis and modeling techniques for interpreting the sonobuoy data and illustrate the method with ten overlapping sonobuoys collected in the Ross Sea, offshore from Antarctica. We demonstrate the importance of using the MCS data to correct for ocean currents and changes in ship navigation, which is required before using standard methods for obtaining a 1D velocity profile from each sonobuoy. We verify our 1D velocity models using acoustic finite-difference (FD) modeling and by performing depth migration on the data, and demonstrate the usefulness of FD modeling for tying interval velocities to the shallow crust imaged using MCS data. Finally, we show how overlapping sonobuoys along an MCS line can be used to construct a 2D velocity model of the crust. The velocity model reveals a thin crust (5.5 ± 0.4 km) at the boundary between the Adare and Northern Basins, and implies that the crustal structure of the Northern Basin may be more similar to that of the oceanic crust in the Adare Basin than to the stretched continental crust further south in the Ross Sea.</description><subject>Continental crust</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Geophysics</subject><subject>Geophysics/Geodesy</subject><subject>Marine</subject><subject>Ocean currents</subject><subject>Oceanic crust</subject><subject>Oceanographic instruments</subject><subject>Oceanography</subject><subject>Offshore Engineering</subject><subject>Original Research Paper</subject><subject>Seismology</subject><subject>Velocity</subject><issn>0025-3235</issn><issn>1573-0581</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LxDAQxYMouK5-AG_Bi6dqJm2a9CjrXxAEdc8hTafrLt2mJqmw--nNsoIgeJoZ-L3HvEfIObArYExeB0gDMgaQVVDk2faATEDIPGNCwSGZMMZFlvNcHJOTEFYs3apiE6LnYdkvqPtC35lh2O3B9a4e3YY2Jhraerem8QPpqwuBvqGh0VHr-hD9aCM1lN_SBnGg1o8hmo5-YefsMm7o2jXYnZKj1nQBz37mlMzv795nj9nzy8PT7OY5MwXkMStsiyC5qplSjbENb-qixqZqAVOISpWlYLIVoHIlTCHqwmJbycbUoLiSBc-n5HLvO3j3OWKIer0MFrvO9OjGoKtSgQSlRCIv_pArN_o-PacrLiUIXpYJgj1kfYrtsdWDX66N32hgele43heuU-F6V7jeJg3fa0Ji-wX6X-P_Rd9284OH</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>Selvans, M. M.</creator><creator>Clayton, R. W.</creator><creator>Stock, J. M.</creator><creator>Granot, R.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M2P</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20120301</creationdate><title>Using overlapping sonobuoy data from the Ross Sea to construct a 2D deep crustal velocity model</title><author>Selvans, M. M. ; Clayton, R. W. ; Stock, J. M. ; Granot, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a413t-4cfe1728b088dacd2db4bed9f1e5739866507f518385a45b4cef97dab18287423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Continental crust</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Geophysics</topic><topic>Geophysics/Geodesy</topic><topic>Marine</topic><topic>Ocean currents</topic><topic>Oceanic crust</topic><topic>Oceanographic instruments</topic><topic>Oceanography</topic><topic>Offshore Engineering</topic><topic>Original Research Paper</topic><topic>Seismology</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Selvans, M. M.</creatorcontrib><creatorcontrib>Clayton, R. W.</creatorcontrib><creatorcontrib>Stock, J. M.</creatorcontrib><creatorcontrib>Granot, R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Earth, Atmospheric &amp; Aquatic Science</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Science Journals</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Marine geophysical researches</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Selvans, M. M.</au><au>Clayton, R. W.</au><au>Stock, J. M.</au><au>Granot, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using overlapping sonobuoy data from the Ross Sea to construct a 2D deep crustal velocity model</atitle><jtitle>Marine geophysical researches</jtitle><stitle>Mar Geophys Res</stitle><date>2012-03-01</date><risdate>2012</risdate><volume>33</volume><issue>1</issue><spage>17</spage><epage>32</epage><pages>17-32</pages><issn>0025-3235</issn><eissn>1573-0581</eissn><abstract>Sonobuoys provide an alternative to using long streamers while conducting multi-channel seismic (MCS) studies, in order to provide deeper velocity control. We present analysis and modeling techniques for interpreting the sonobuoy data and illustrate the method with ten overlapping sonobuoys collected in the Ross Sea, offshore from Antarctica. We demonstrate the importance of using the MCS data to correct for ocean currents and changes in ship navigation, which is required before using standard methods for obtaining a 1D velocity profile from each sonobuoy. We verify our 1D velocity models using acoustic finite-difference (FD) modeling and by performing depth migration on the data, and demonstrate the usefulness of FD modeling for tying interval velocities to the shallow crust imaged using MCS data. Finally, we show how overlapping sonobuoys along an MCS line can be used to construct a 2D velocity model of the crust. The velocity model reveals a thin crust (5.5 ± 0.4 km) at the boundary between the Adare and Northern Basins, and implies that the crustal structure of the Northern Basin may be more similar to that of the oceanic crust in the Adare Basin than to the stretched continental crust further south in the Ross Sea.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11001-011-9143-z</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0025-3235
ispartof Marine geophysical researches, 2012-03, Vol.33 (1), p.17-32
issn 0025-3235
1573-0581
language eng
recordid cdi_proquest_miscellaneous_968171885
source Springer Nature
subjects Continental crust
Earth and Environmental Science
Earth Sciences
Geophysics
Geophysics/Geodesy
Marine
Ocean currents
Oceanic crust
Oceanographic instruments
Oceanography
Offshore Engineering
Original Research Paper
Seismology
Velocity
title Using overlapping sonobuoy data from the Ross Sea to construct a 2D deep crustal velocity model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A36%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20overlapping%20sonobuoy%20data%20from%20the%20Ross%20Sea%20to%20construct%20a%202D%20deep%20crustal%20velocity%20model&rft.jtitle=Marine%20geophysical%20researches&rft.au=Selvans,%20M.%20M.&rft.date=2012-03-01&rft.volume=33&rft.issue=1&rft.spage=17&rft.epage=32&rft.pages=17-32&rft.issn=0025-3235&rft.eissn=1573-0581&rft_id=info:doi/10.1007/s11001-011-9143-z&rft_dat=%3Cproquest_cross%3E968171885%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a413t-4cfe1728b088dacd2db4bed9f1e5739866507f518385a45b4cef97dab18287423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=927715266&rft_id=info:pmid/&rfr_iscdi=true