Loading…
Confirmation of quantitative trait loci for resistance to multiple-HG types of soybean cyst nematode (Heterodera glycines Ichinohe)
Genetic analysis of resistance of plant introduction (PI) 438489B to soybean cyst nematode (SCN) have shown that this PI is highly resistant to many SCN HG types. However, validation of the previously detected quantitative trait loci (QTL) has not been done. In this study, 250 F 2:3 progeny of a Mag...
Saved in:
Published in: | Euphytica 2011-09, Vol.181 (1), p.101-113, Article 101 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Genetic analysis of resistance of plant introduction (PI) 438489B to soybean cyst nematode (SCN) have shown that this PI is highly resistant to many SCN HG types. However, validation of the previously detected quantitative trait loci (QTL) has not been done. In this study, 250 F
2:3
progeny of a Magellan (susceptible) × PI 438489B (resistant) cross were used for primary genetic mapping to detect putative QTL for resistance to five SCN HG types. QTL confirmation study was subsequently conducted using F
6:7
recombinant inbred lines (RILs) derived from the same cross. Simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers were employed for molecular genotyping. Interval mapping (IM), permutation tests, cofactor selection, and composite interval mapping (CIM) were performed to identify and map QTL. Results showed that five QTL intervals were associated with resistance to either multiple- or single-HG types of SCN. Among these, two major QTL for resistance to multiple-SCN HG types were mapped to chromosomes (Chr.) 8 and 18, consistent with the known
rhg1
and
Rhg4
locations. The other QTL were mapped to Chr. 4. The results of our study confirmed earlier reported SCN resistance QTL in this PI. Moreover, SSR and SNP molecular markers tightly linked to these QTL can be useful for the near-isogenic lines (NILs) development aiming to fine-mapping of these QTL regions and map-based cloning of SCN resistance candidate genes. |
---|---|
ISSN: | 0014-2336 1573-5060 |
DOI: | 10.1007/s10681-011-0430-1 |