Loading…

Developing X-ray Computed Tomography to non-invasively image 3-D root systems architecture in soil

Background The need to observe roots in their natural undisturbed state within soil, both spatially and temporally, is a challenge that continues to occupy researchers studying the rhizosphere. Scope This paper reviews how over the last 30 years the application of X-ray Computed Tomography (CT) has...

Full description

Saved in:
Bibliographic Details
Published in:Plant and soil 2012-03, Vol.352 (1-2), p.1-22
Main Authors: Mooney, S. J., Pridmore, T. P., Helliwell, J., Bennett, M. J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background The need to observe roots in their natural undisturbed state within soil, both spatially and temporally, is a challenge that continues to occupy researchers studying the rhizosphere. Scope This paper reviews how over the last 30 years the application of X-ray Computed Tomography (CT) has demonstrated considerable promise for root visualisation studies. We describe how early CT work demonstrated that roots could be visualised within soils, but was limited by resolution (ca. 1 mm). Subsequent work, utilising newer micro CT scanners, has been able to achieve higher resolutions (ca. 50 μm) and enhance imaging capability in terms of detecting finer root material. However the overlap in the attenuation density of root material and soil pore space has been a major impediment to the uptake of the technology. We then outline how sophisticated image processing techniques, frequently based on object tracking methods, have demonstrated great promise in overcoming these obstacles. This, along with the concurrent advances in scan and reconstruction times, image quality and resolution (ca. 0.5 μm) have opened up new opportunities for the application of X-ray CT in experimental studies of root and soil interactions. Conclusions We conclude that CT is well placed to contribute significantly to unravelling the complex interactions between roots and soil.
ISSN:0032-079X
1573-5036
DOI:10.1007/s11104-011-1039-9