Loading…

Toxicity of 6-hydroxydopamine: live cell imaging of cytoplasmic redox flux

Oxidative stress contributes to several debilitating neurodegenerative diseases. To facilitate direct monitoring of the cytoplasmic oxidation state in neuronal cells, we have developed roTurbo by including several mutations: F223R, A206K, and six of the mutations for superfolder green fluorescent pr...

Full description

Saved in:
Bibliographic Details
Published in:Cell biology and toxicology 2012-04, Vol.28 (2), p.89-101
Main Authors: Dooley, Colette T., Li, Ling, Misler, Jaime A., Thompson, Jane H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Oxidative stress contributes to several debilitating neurodegenerative diseases. To facilitate direct monitoring of the cytoplasmic oxidation state in neuronal cells, we have developed roTurbo by including several mutations: F223R, A206K, and six of the mutations for superfolder green fluorescent protein. Thus we have generated an improved redox sensor that is much brighter in cells and oxidizes more readily than roGFP2. Cytoplasmic expression of the sensor demonstrated the temporal pattern of 6-hydroxydopamine (6-OHDA) induced oxidative stress in a neuroblastoma cell line (SH-SY5Y). Two distinct oxidation responses were identified in SH-SY5Y cells but a single response observed in cells lacking monoamine transporters (HEK293). While both cell lines exhibited a rapid transient oxidation in response to 6-OHDA, a second oxidative response coincident with cell death was observed only in SH-SY5Y cells, indicating an intracellular metabolism of 6-OHDA, and or its metabolites are involved. In contrast, exogenously applied hydrogen peroxide induced a cellular oxidative response similar to the first oxidation peak, and cell loss was minimal. Glucose deprivation enhanced the oxidative stress induced by 6-OHDA, confirming the pivotal role played by glucose in maintaining a reduced cytoplasmic environment. While these studies support previous findings that catecholamine auto-oxidation products cause oxidative stress, our findings also support studies indicating 6-OHDA induces lethal oxidative stress responses unrelated to production of hydrogen peroxide. Finally, temporal imaging revealed the sporadic nature of the toxicity induced by 6-OHDA in neuroblastoma cells.
ISSN:0742-2091
1573-6822
DOI:10.1007/s10565-011-9209-3