Loading…

Growth, lipid extraction and thermal degradation of the microalga Chlorella vulgaris

► Lipid extraction methods. ► Fatty acid profile. ► Thermal decomposition of microalgae. The microalga Chlorella vulgaris was cultured in a combined medium obtained by mixing standard Jaworski medium with a solution from the modified Solvay process that contained only NaHCO3 and NH4Cl. Cell number,...

Full description

Saved in:
Bibliographic Details
Published in:New biotechnology 2012-02, Vol.29 (3), p.325-331
Main Authors: Šoštarič, Maja, Klinar, Dušan, Bricelj, Mihael, Golob, Janvit, Berovič, Marin, Likozar, Blaž
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c474t-ab7214ac4ecd8c5f982011a67e471a7b61469f30bbf4b6d53e0dfbaafc1fabd93
cites cdi_FETCH-LOGICAL-c474t-ab7214ac4ecd8c5f982011a67e471a7b61469f30bbf4b6d53e0dfbaafc1fabd93
container_end_page 331
container_issue 3
container_start_page 325
container_title New biotechnology
container_volume 29
creator Šoštarič, Maja
Klinar, Dušan
Bricelj, Mihael
Golob, Janvit
Berovič, Marin
Likozar, Blaž
description ► Lipid extraction methods. ► Fatty acid profile. ► Thermal decomposition of microalgae. The microalga Chlorella vulgaris was cultured in a combined medium obtained by mixing standard Jaworski medium with a solution from the modified Solvay process that contained only NaHCO3 and NH4Cl. Cell number, pH and nitrogen content were monitored throughout growth. Lipids were extracted from lyophilised biomass using CHCl3–MeOH. A combination of grinding, microwave treatment and sonication proved to give the best lipid extract yield. Freeze-dried algal biomass was also utilised for thermal degradation studies. The degradation exhibited three distinct regions – primary cell structure breakage paralleled by evaporation of water, followed by two predominant exothermic degradation processes. The latter were modelled using nth order apparent kinetics. The activation energies of the degradation processes were determined to be 120–126kJ/mol and 122–132kJ/mol, respectively. The degradation model may be readily applied to an assortment of thermal algal processes, especially those relating to renewable energy.
doi_str_mv 10.1016/j.nbt.2011.12.002
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_968177726</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1871678411002688</els_id><sourcerecordid>919957512</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-ab7214ac4ecd8c5f982011a67e471a7b61469f30bbf4b6d53e0dfbaafc1fabd93</originalsourceid><addsrcrecordid>eNqFkE9v1DAQxS0EoqXwAbhAblxI8DiOnYgTWpWCVIkD7dka_9v1KokXO1vot8fpFo5w8vjpN09vHiGvgTZAQXzYN7NeGkYBGmANpewJOYdeipq3XD59mKEWsudn5EXOe0oFDAKekzPGoKgUzsnNVYo_l937agyHYCv3a0lolhDnCmdbLTuXJhwr67YJLT7o0a9yNQWTIo5brDa7MSY3jljdHcs_hfySPPM4Zvfq8b0gt58vbzZf6utvV183n65rwyVfatSSAUfDnbG96fzQr6egkI5LQKkFcDH4lmrtuRa2ax21XiN6Ax61HdoL8u7ke0jxx9HlRU0hmzXK7OIxq0H0IKVk4v8kDEMnO2CFhBNZzss5Oa8OKUyY7hVQtbau9qq0rtaoCpgqrZedN4_uRz05-3fjT80FeHsCPEaF21KRuv1eHASltOt62hbi44lwpa-74JLKJrjZOBuSM4uyMfwjwG8u3Jy6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>919957512</pqid></control><display><type>article</type><title>Growth, lipid extraction and thermal degradation of the microalga Chlorella vulgaris</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Šoštarič, Maja ; Klinar, Dušan ; Bricelj, Mihael ; Golob, Janvit ; Berovič, Marin ; Likozar, Blaž</creator><creatorcontrib>Šoštarič, Maja ; Klinar, Dušan ; Bricelj, Mihael ; Golob, Janvit ; Berovič, Marin ; Likozar, Blaž</creatorcontrib><description>► Lipid extraction methods. ► Fatty acid profile. ► Thermal decomposition of microalgae. The microalga Chlorella vulgaris was cultured in a combined medium obtained by mixing standard Jaworski medium with a solution from the modified Solvay process that contained only NaHCO3 and NH4Cl. Cell number, pH and nitrogen content were monitored throughout growth. Lipids were extracted from lyophilised biomass using CHCl3–MeOH. A combination of grinding, microwave treatment and sonication proved to give the best lipid extract yield. Freeze-dried algal biomass was also utilised for thermal degradation studies. The degradation exhibited three distinct regions – primary cell structure breakage paralleled by evaporation of water, followed by two predominant exothermic degradation processes. The latter were modelled using nth order apparent kinetics. The activation energies of the degradation processes were determined to be 120–126kJ/mol and 122–132kJ/mol, respectively. The degradation model may be readily applied to an assortment of thermal algal processes, especially those relating to renewable energy.</description><identifier>ISSN: 1871-6784</identifier><identifier>EISSN: 1876-4347</identifier><identifier>DOI: 10.1016/j.nbt.2011.12.002</identifier><identifier>PMID: 22178401</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>activation energy ; ammonium chloride ; Biofuels ; Biomass ; cell structures ; Chlorella vulgaris ; Chlorella vulgaris - chemistry ; Chlorella vulgaris - growth &amp; development ; Chloroform - chemistry ; evaporation ; freeze drying ; grinding ; heat production ; lipids ; Lipids - chemistry ; Lipids - isolation &amp; purification ; Methanol - chemistry ; microalgae ; microwave treatment ; mixing ; nitrogen content ; renewable energy sources ; sodium bicarbonate ; thermal degradation</subject><ispartof>New biotechnology, 2012-02, Vol.29 (3), p.325-331</ispartof><rights>2012 Elsevier B.V.</rights><rights>Copyright © 2012 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-ab7214ac4ecd8c5f982011a67e471a7b61469f30bbf4b6d53e0dfbaafc1fabd93</citedby><cites>FETCH-LOGICAL-c474t-ab7214ac4ecd8c5f982011a67e471a7b61469f30bbf4b6d53e0dfbaafc1fabd93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22178401$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Šoštarič, Maja</creatorcontrib><creatorcontrib>Klinar, Dušan</creatorcontrib><creatorcontrib>Bricelj, Mihael</creatorcontrib><creatorcontrib>Golob, Janvit</creatorcontrib><creatorcontrib>Berovič, Marin</creatorcontrib><creatorcontrib>Likozar, Blaž</creatorcontrib><title>Growth, lipid extraction and thermal degradation of the microalga Chlorella vulgaris</title><title>New biotechnology</title><addtitle>N Biotechnol</addtitle><description>► Lipid extraction methods. ► Fatty acid profile. ► Thermal decomposition of microalgae. The microalga Chlorella vulgaris was cultured in a combined medium obtained by mixing standard Jaworski medium with a solution from the modified Solvay process that contained only NaHCO3 and NH4Cl. Cell number, pH and nitrogen content were monitored throughout growth. Lipids were extracted from lyophilised biomass using CHCl3–MeOH. A combination of grinding, microwave treatment and sonication proved to give the best lipid extract yield. Freeze-dried algal biomass was also utilised for thermal degradation studies. The degradation exhibited three distinct regions – primary cell structure breakage paralleled by evaporation of water, followed by two predominant exothermic degradation processes. The latter were modelled using nth order apparent kinetics. The activation energies of the degradation processes were determined to be 120–126kJ/mol and 122–132kJ/mol, respectively. The degradation model may be readily applied to an assortment of thermal algal processes, especially those relating to renewable energy.</description><subject>activation energy</subject><subject>ammonium chloride</subject><subject>Biofuels</subject><subject>Biomass</subject><subject>cell structures</subject><subject>Chlorella vulgaris</subject><subject>Chlorella vulgaris - chemistry</subject><subject>Chlorella vulgaris - growth &amp; development</subject><subject>Chloroform - chemistry</subject><subject>evaporation</subject><subject>freeze drying</subject><subject>grinding</subject><subject>heat production</subject><subject>lipids</subject><subject>Lipids - chemistry</subject><subject>Lipids - isolation &amp; purification</subject><subject>Methanol - chemistry</subject><subject>microalgae</subject><subject>microwave treatment</subject><subject>mixing</subject><subject>nitrogen content</subject><subject>renewable energy sources</subject><subject>sodium bicarbonate</subject><subject>thermal degradation</subject><issn>1871-6784</issn><issn>1876-4347</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkE9v1DAQxS0EoqXwAbhAblxI8DiOnYgTWpWCVIkD7dka_9v1KokXO1vot8fpFo5w8vjpN09vHiGvgTZAQXzYN7NeGkYBGmANpewJOYdeipq3XD59mKEWsudn5EXOe0oFDAKekzPGoKgUzsnNVYo_l937agyHYCv3a0lolhDnCmdbLTuXJhwr67YJLT7o0a9yNQWTIo5brDa7MSY3jljdHcs_hfySPPM4Zvfq8b0gt58vbzZf6utvV183n65rwyVfatSSAUfDnbG96fzQr6egkI5LQKkFcDH4lmrtuRa2ax21XiN6Ax61HdoL8u7ke0jxx9HlRU0hmzXK7OIxq0H0IKVk4v8kDEMnO2CFhBNZzss5Oa8OKUyY7hVQtbau9qq0rtaoCpgqrZedN4_uRz05-3fjT80FeHsCPEaF21KRuv1eHASltOt62hbi44lwpa-74JLKJrjZOBuSM4uyMfwjwG8u3Jy6</recordid><startdate>20120215</startdate><enddate>20120215</enddate><creator>Šoštarič, Maja</creator><creator>Klinar, Dušan</creator><creator>Bricelj, Mihael</creator><creator>Golob, Janvit</creator><creator>Berovič, Marin</creator><creator>Likozar, Blaž</creator><general>Elsevier B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>H98</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope></search><sort><creationdate>20120215</creationdate><title>Growth, lipid extraction and thermal degradation of the microalga Chlorella vulgaris</title><author>Šoštarič, Maja ; Klinar, Dušan ; Bricelj, Mihael ; Golob, Janvit ; Berovič, Marin ; Likozar, Blaž</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-ab7214ac4ecd8c5f982011a67e471a7b61469f30bbf4b6d53e0dfbaafc1fabd93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>activation energy</topic><topic>ammonium chloride</topic><topic>Biofuels</topic><topic>Biomass</topic><topic>cell structures</topic><topic>Chlorella vulgaris</topic><topic>Chlorella vulgaris - chemistry</topic><topic>Chlorella vulgaris - growth &amp; development</topic><topic>Chloroform - chemistry</topic><topic>evaporation</topic><topic>freeze drying</topic><topic>grinding</topic><topic>heat production</topic><topic>lipids</topic><topic>Lipids - chemistry</topic><topic>Lipids - isolation &amp; purification</topic><topic>Methanol - chemistry</topic><topic>microalgae</topic><topic>microwave treatment</topic><topic>mixing</topic><topic>nitrogen content</topic><topic>renewable energy sources</topic><topic>sodium bicarbonate</topic><topic>thermal degradation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Šoštarič, Maja</creatorcontrib><creatorcontrib>Klinar, Dušan</creatorcontrib><creatorcontrib>Bricelj, Mihael</creatorcontrib><creatorcontrib>Golob, Janvit</creatorcontrib><creatorcontrib>Berovič, Marin</creatorcontrib><creatorcontrib>Likozar, Blaž</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Aquaculture Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>New biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Šoštarič, Maja</au><au>Klinar, Dušan</au><au>Bricelj, Mihael</au><au>Golob, Janvit</au><au>Berovič, Marin</au><au>Likozar, Blaž</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Growth, lipid extraction and thermal degradation of the microalga Chlorella vulgaris</atitle><jtitle>New biotechnology</jtitle><addtitle>N Biotechnol</addtitle><date>2012-02-15</date><risdate>2012</risdate><volume>29</volume><issue>3</issue><spage>325</spage><epage>331</epage><pages>325-331</pages><issn>1871-6784</issn><eissn>1876-4347</eissn><abstract>► Lipid extraction methods. ► Fatty acid profile. ► Thermal decomposition of microalgae. The microalga Chlorella vulgaris was cultured in a combined medium obtained by mixing standard Jaworski medium with a solution from the modified Solvay process that contained only NaHCO3 and NH4Cl. Cell number, pH and nitrogen content were monitored throughout growth. Lipids were extracted from lyophilised biomass using CHCl3–MeOH. A combination of grinding, microwave treatment and sonication proved to give the best lipid extract yield. Freeze-dried algal biomass was also utilised for thermal degradation studies. The degradation exhibited three distinct regions – primary cell structure breakage paralleled by evaporation of water, followed by two predominant exothermic degradation processes. The latter were modelled using nth order apparent kinetics. The activation energies of the degradation processes were determined to be 120–126kJ/mol and 122–132kJ/mol, respectively. The degradation model may be readily applied to an assortment of thermal algal processes, especially those relating to renewable energy.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>22178401</pmid><doi>10.1016/j.nbt.2011.12.002</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1871-6784
ispartof New biotechnology, 2012-02, Vol.29 (3), p.325-331
issn 1871-6784
1876-4347
language eng
recordid cdi_proquest_miscellaneous_968177726
source ScienceDirect Freedom Collection 2022-2024
subjects activation energy
ammonium chloride
Biofuels
Biomass
cell structures
Chlorella vulgaris
Chlorella vulgaris - chemistry
Chlorella vulgaris - growth & development
Chloroform - chemistry
evaporation
freeze drying
grinding
heat production
lipids
Lipids - chemistry
Lipids - isolation & purification
Methanol - chemistry
microalgae
microwave treatment
mixing
nitrogen content
renewable energy sources
sodium bicarbonate
thermal degradation
title Growth, lipid extraction and thermal degradation of the microalga Chlorella vulgaris
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A26%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Growth,%20lipid%20extraction%20and%20thermal%20degradation%20of%20the%20microalga%20Chlorella%20vulgaris&rft.jtitle=New%20biotechnology&rft.au=%C5%A0o%C5%A1tari%C4%8D,%20Maja&rft.date=2012-02-15&rft.volume=29&rft.issue=3&rft.spage=325&rft.epage=331&rft.pages=325-331&rft.issn=1871-6784&rft.eissn=1876-4347&rft_id=info:doi/10.1016/j.nbt.2011.12.002&rft_dat=%3Cproquest_cross%3E919957512%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-ab7214ac4ecd8c5f982011a67e471a7b61469f30bbf4b6d53e0dfbaafc1fabd93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=919957512&rft_id=info:pmid/22178401&rfr_iscdi=true