Loading…
Growth, lipid extraction and thermal degradation of the microalga Chlorella vulgaris
► Lipid extraction methods. ► Fatty acid profile. ► Thermal decomposition of microalgae. The microalga Chlorella vulgaris was cultured in a combined medium obtained by mixing standard Jaworski medium with a solution from the modified Solvay process that contained only NaHCO3 and NH4Cl. Cell number,...
Saved in:
Published in: | New biotechnology 2012-02, Vol.29 (3), p.325-331 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c474t-ab7214ac4ecd8c5f982011a67e471a7b61469f30bbf4b6d53e0dfbaafc1fabd93 |
---|---|
cites | cdi_FETCH-LOGICAL-c474t-ab7214ac4ecd8c5f982011a67e471a7b61469f30bbf4b6d53e0dfbaafc1fabd93 |
container_end_page | 331 |
container_issue | 3 |
container_start_page | 325 |
container_title | New biotechnology |
container_volume | 29 |
creator | Šoštarič, Maja Klinar, Dušan Bricelj, Mihael Golob, Janvit Berovič, Marin Likozar, Blaž |
description | ► Lipid extraction methods. ► Fatty acid profile. ► Thermal decomposition of microalgae.
The microalga Chlorella vulgaris was cultured in a combined medium obtained by mixing standard Jaworski medium with a solution from the modified Solvay process that contained only NaHCO3 and NH4Cl. Cell number, pH and nitrogen content were monitored throughout growth. Lipids were extracted from lyophilised biomass using CHCl3–MeOH. A combination of grinding, microwave treatment and sonication proved to give the best lipid extract yield. Freeze-dried algal biomass was also utilised for thermal degradation studies. The degradation exhibited three distinct regions – primary cell structure breakage paralleled by evaporation of water, followed by two predominant exothermic degradation processes. The latter were modelled using nth order apparent kinetics. The activation energies of the degradation processes were determined to be 120–126kJ/mol and 122–132kJ/mol, respectively. The degradation model may be readily applied to an assortment of thermal algal processes, especially those relating to renewable energy. |
doi_str_mv | 10.1016/j.nbt.2011.12.002 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_968177726</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1871678411002688</els_id><sourcerecordid>919957512</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-ab7214ac4ecd8c5f982011a67e471a7b61469f30bbf4b6d53e0dfbaafc1fabd93</originalsourceid><addsrcrecordid>eNqFkE9v1DAQxS0EoqXwAbhAblxI8DiOnYgTWpWCVIkD7dka_9v1KokXO1vot8fpFo5w8vjpN09vHiGvgTZAQXzYN7NeGkYBGmANpewJOYdeipq3XD59mKEWsudn5EXOe0oFDAKekzPGoKgUzsnNVYo_l937agyHYCv3a0lolhDnCmdbLTuXJhwr67YJLT7o0a9yNQWTIo5brDa7MSY3jljdHcs_hfySPPM4Zvfq8b0gt58vbzZf6utvV183n65rwyVfatSSAUfDnbG96fzQr6egkI5LQKkFcDH4lmrtuRa2ax21XiN6Ax61HdoL8u7ke0jxx9HlRU0hmzXK7OIxq0H0IKVk4v8kDEMnO2CFhBNZzss5Oa8OKUyY7hVQtbau9qq0rtaoCpgqrZedN4_uRz05-3fjT80FeHsCPEaF21KRuv1eHASltOt62hbi44lwpa-74JLKJrjZOBuSM4uyMfwjwG8u3Jy6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>919957512</pqid></control><display><type>article</type><title>Growth, lipid extraction and thermal degradation of the microalga Chlorella vulgaris</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Šoštarič, Maja ; Klinar, Dušan ; Bricelj, Mihael ; Golob, Janvit ; Berovič, Marin ; Likozar, Blaž</creator><creatorcontrib>Šoštarič, Maja ; Klinar, Dušan ; Bricelj, Mihael ; Golob, Janvit ; Berovič, Marin ; Likozar, Blaž</creatorcontrib><description>► Lipid extraction methods. ► Fatty acid profile. ► Thermal decomposition of microalgae.
The microalga Chlorella vulgaris was cultured in a combined medium obtained by mixing standard Jaworski medium with a solution from the modified Solvay process that contained only NaHCO3 and NH4Cl. Cell number, pH and nitrogen content were monitored throughout growth. Lipids were extracted from lyophilised biomass using CHCl3–MeOH. A combination of grinding, microwave treatment and sonication proved to give the best lipid extract yield. Freeze-dried algal biomass was also utilised for thermal degradation studies. The degradation exhibited three distinct regions – primary cell structure breakage paralleled by evaporation of water, followed by two predominant exothermic degradation processes. The latter were modelled using nth order apparent kinetics. The activation energies of the degradation processes were determined to be 120–126kJ/mol and 122–132kJ/mol, respectively. The degradation model may be readily applied to an assortment of thermal algal processes, especially those relating to renewable energy.</description><identifier>ISSN: 1871-6784</identifier><identifier>EISSN: 1876-4347</identifier><identifier>DOI: 10.1016/j.nbt.2011.12.002</identifier><identifier>PMID: 22178401</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>activation energy ; ammonium chloride ; Biofuels ; Biomass ; cell structures ; Chlorella vulgaris ; Chlorella vulgaris - chemistry ; Chlorella vulgaris - growth & development ; Chloroform - chemistry ; evaporation ; freeze drying ; grinding ; heat production ; lipids ; Lipids - chemistry ; Lipids - isolation & purification ; Methanol - chemistry ; microalgae ; microwave treatment ; mixing ; nitrogen content ; renewable energy sources ; sodium bicarbonate ; thermal degradation</subject><ispartof>New biotechnology, 2012-02, Vol.29 (3), p.325-331</ispartof><rights>2012 Elsevier B.V.</rights><rights>Copyright © 2012 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-ab7214ac4ecd8c5f982011a67e471a7b61469f30bbf4b6d53e0dfbaafc1fabd93</citedby><cites>FETCH-LOGICAL-c474t-ab7214ac4ecd8c5f982011a67e471a7b61469f30bbf4b6d53e0dfbaafc1fabd93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22178401$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Šoštarič, Maja</creatorcontrib><creatorcontrib>Klinar, Dušan</creatorcontrib><creatorcontrib>Bricelj, Mihael</creatorcontrib><creatorcontrib>Golob, Janvit</creatorcontrib><creatorcontrib>Berovič, Marin</creatorcontrib><creatorcontrib>Likozar, Blaž</creatorcontrib><title>Growth, lipid extraction and thermal degradation of the microalga Chlorella vulgaris</title><title>New biotechnology</title><addtitle>N Biotechnol</addtitle><description>► Lipid extraction methods. ► Fatty acid profile. ► Thermal decomposition of microalgae.
The microalga Chlorella vulgaris was cultured in a combined medium obtained by mixing standard Jaworski medium with a solution from the modified Solvay process that contained only NaHCO3 and NH4Cl. Cell number, pH and nitrogen content were monitored throughout growth. Lipids were extracted from lyophilised biomass using CHCl3–MeOH. A combination of grinding, microwave treatment and sonication proved to give the best lipid extract yield. Freeze-dried algal biomass was also utilised for thermal degradation studies. The degradation exhibited three distinct regions – primary cell structure breakage paralleled by evaporation of water, followed by two predominant exothermic degradation processes. The latter were modelled using nth order apparent kinetics. The activation energies of the degradation processes were determined to be 120–126kJ/mol and 122–132kJ/mol, respectively. The degradation model may be readily applied to an assortment of thermal algal processes, especially those relating to renewable energy.</description><subject>activation energy</subject><subject>ammonium chloride</subject><subject>Biofuels</subject><subject>Biomass</subject><subject>cell structures</subject><subject>Chlorella vulgaris</subject><subject>Chlorella vulgaris - chemistry</subject><subject>Chlorella vulgaris - growth & development</subject><subject>Chloroform - chemistry</subject><subject>evaporation</subject><subject>freeze drying</subject><subject>grinding</subject><subject>heat production</subject><subject>lipids</subject><subject>Lipids - chemistry</subject><subject>Lipids - isolation & purification</subject><subject>Methanol - chemistry</subject><subject>microalgae</subject><subject>microwave treatment</subject><subject>mixing</subject><subject>nitrogen content</subject><subject>renewable energy sources</subject><subject>sodium bicarbonate</subject><subject>thermal degradation</subject><issn>1871-6784</issn><issn>1876-4347</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkE9v1DAQxS0EoqXwAbhAblxI8DiOnYgTWpWCVIkD7dka_9v1KokXO1vot8fpFo5w8vjpN09vHiGvgTZAQXzYN7NeGkYBGmANpewJOYdeipq3XD59mKEWsudn5EXOe0oFDAKekzPGoKgUzsnNVYo_l937agyHYCv3a0lolhDnCmdbLTuXJhwr67YJLT7o0a9yNQWTIo5brDa7MSY3jljdHcs_hfySPPM4Zvfq8b0gt58vbzZf6utvV183n65rwyVfatSSAUfDnbG96fzQr6egkI5LQKkFcDH4lmrtuRa2ax21XiN6Ax61HdoL8u7ke0jxx9HlRU0hmzXK7OIxq0H0IKVk4v8kDEMnO2CFhBNZzss5Oa8OKUyY7hVQtbau9qq0rtaoCpgqrZedN4_uRz05-3fjT80FeHsCPEaF21KRuv1eHASltOt62hbi44lwpa-74JLKJrjZOBuSM4uyMfwjwG8u3Jy6</recordid><startdate>20120215</startdate><enddate>20120215</enddate><creator>Šoštarič, Maja</creator><creator>Klinar, Dušan</creator><creator>Bricelj, Mihael</creator><creator>Golob, Janvit</creator><creator>Berovič, Marin</creator><creator>Likozar, Blaž</creator><general>Elsevier B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>H98</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope></search><sort><creationdate>20120215</creationdate><title>Growth, lipid extraction and thermal degradation of the microalga Chlorella vulgaris</title><author>Šoštarič, Maja ; Klinar, Dušan ; Bricelj, Mihael ; Golob, Janvit ; Berovič, Marin ; Likozar, Blaž</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-ab7214ac4ecd8c5f982011a67e471a7b61469f30bbf4b6d53e0dfbaafc1fabd93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>activation energy</topic><topic>ammonium chloride</topic><topic>Biofuels</topic><topic>Biomass</topic><topic>cell structures</topic><topic>Chlorella vulgaris</topic><topic>Chlorella vulgaris - chemistry</topic><topic>Chlorella vulgaris - growth & development</topic><topic>Chloroform - chemistry</topic><topic>evaporation</topic><topic>freeze drying</topic><topic>grinding</topic><topic>heat production</topic><topic>lipids</topic><topic>Lipids - chemistry</topic><topic>Lipids - isolation & purification</topic><topic>Methanol - chemistry</topic><topic>microalgae</topic><topic>microwave treatment</topic><topic>mixing</topic><topic>nitrogen content</topic><topic>renewable energy sources</topic><topic>sodium bicarbonate</topic><topic>thermal degradation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Šoštarič, Maja</creatorcontrib><creatorcontrib>Klinar, Dušan</creatorcontrib><creatorcontrib>Bricelj, Mihael</creatorcontrib><creatorcontrib>Golob, Janvit</creatorcontrib><creatorcontrib>Berovič, Marin</creatorcontrib><creatorcontrib>Likozar, Blaž</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>New biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Šoštarič, Maja</au><au>Klinar, Dušan</au><au>Bricelj, Mihael</au><au>Golob, Janvit</au><au>Berovič, Marin</au><au>Likozar, Blaž</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Growth, lipid extraction and thermal degradation of the microalga Chlorella vulgaris</atitle><jtitle>New biotechnology</jtitle><addtitle>N Biotechnol</addtitle><date>2012-02-15</date><risdate>2012</risdate><volume>29</volume><issue>3</issue><spage>325</spage><epage>331</epage><pages>325-331</pages><issn>1871-6784</issn><eissn>1876-4347</eissn><abstract>► Lipid extraction methods. ► Fatty acid profile. ► Thermal decomposition of microalgae.
The microalga Chlorella vulgaris was cultured in a combined medium obtained by mixing standard Jaworski medium with a solution from the modified Solvay process that contained only NaHCO3 and NH4Cl. Cell number, pH and nitrogen content were monitored throughout growth. Lipids were extracted from lyophilised biomass using CHCl3–MeOH. A combination of grinding, microwave treatment and sonication proved to give the best lipid extract yield. Freeze-dried algal biomass was also utilised for thermal degradation studies. The degradation exhibited three distinct regions – primary cell structure breakage paralleled by evaporation of water, followed by two predominant exothermic degradation processes. The latter were modelled using nth order apparent kinetics. The activation energies of the degradation processes were determined to be 120–126kJ/mol and 122–132kJ/mol, respectively. The degradation model may be readily applied to an assortment of thermal algal processes, especially those relating to renewable energy.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>22178401</pmid><doi>10.1016/j.nbt.2011.12.002</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1871-6784 |
ispartof | New biotechnology, 2012-02, Vol.29 (3), p.325-331 |
issn | 1871-6784 1876-4347 |
language | eng |
recordid | cdi_proquest_miscellaneous_968177726 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | activation energy ammonium chloride Biofuels Biomass cell structures Chlorella vulgaris Chlorella vulgaris - chemistry Chlorella vulgaris - growth & development Chloroform - chemistry evaporation freeze drying grinding heat production lipids Lipids - chemistry Lipids - isolation & purification Methanol - chemistry microalgae microwave treatment mixing nitrogen content renewable energy sources sodium bicarbonate thermal degradation |
title | Growth, lipid extraction and thermal degradation of the microalga Chlorella vulgaris |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A26%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Growth,%20lipid%20extraction%20and%20thermal%20degradation%20of%20the%20microalga%20Chlorella%20vulgaris&rft.jtitle=New%20biotechnology&rft.au=%C5%A0o%C5%A1tari%C4%8D,%20Maja&rft.date=2012-02-15&rft.volume=29&rft.issue=3&rft.spage=325&rft.epage=331&rft.pages=325-331&rft.issn=1871-6784&rft.eissn=1876-4347&rft_id=info:doi/10.1016/j.nbt.2011.12.002&rft_dat=%3Cproquest_cross%3E919957512%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-ab7214ac4ecd8c5f982011a67e471a7b61469f30bbf4b6d53e0dfbaafc1fabd93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=919957512&rft_id=info:pmid/22178401&rfr_iscdi=true |