Loading…

Detecting hydrate and fluid flow from bottom simulating reflector depth anomalies

Methane hydrates, ice-like compounds that consist of water and methane, represent a potentially enormous unconventional methane resource that may play a critical role in climate change and ocean acidification; however, it remains unclear how much hydrate exists. Here, using a newly developed three-d...

Full description

Saved in:
Bibliographic Details
Published in:Geology (Boulder) 2012-03, Vol.40 (3), p.227-230
Main Authors: Hornbach, Matthew J, Bangs, Nathan L, Berndt, Christian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Methane hydrates, ice-like compounds that consist of water and methane, represent a potentially enormous unconventional methane resource that may play a critical role in climate change and ocean acidification; however, it remains unclear how much hydrate exists. Here, using a newly developed three-dimensional (3-D) thermal technique, we reveal a novel method for detecting and quantifying methane hydrate. The analysis reveals where fluids migrate in three dimensions across a continental margin and is used to quantify hydrate with meter-scale horizontal resolution. Our study, located at Hydrate Ridge, offshore Oregon (United States), suggests that heat flow and hydrate concentrations are coupled and that 3-D thermal analysis can be used to constrain hydrate and fluid flow in 3-D seismic data. Hydrate estimates using this technique are consistent with 1-D drilling results, but reveal large, previously unrecognized swaths of hydrate-rich sediments that have gone undetected due to spatially limited drilling and sampling techniques used in past studies. The 3-D analysis suggests that previous hydrate estimates based on drilling at this site are low by a factor of approximately three.
ISSN:0091-7613
1943-2682
DOI:10.1130/G32635.1