Loading…

Polyploid origin, genetic diversity and population structure in the tetraploid sea lavender Limonium narbonense Miller (Plumbaginaceae) from eastern Spain

Limonium narbonense Miller is a fertile tetraploid species with a sporophytic self-incompatibility system. This sea lavender is found in coastal salt marshes which have been under intense human pressure during the past decades resulting in significant habitat fragmentation. Eleven microsatellite loc...

Full description

Saved in:
Bibliographic Details
Published in:Genetica 2011-10, Vol.139 (10), p.1309-1322
Main Authors: Palop-Esteban, M, Segarra-Moragues, J. G, González-Candelas, F
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Limonium narbonense Miller is a fertile tetraploid species with a sporophytic self-incompatibility system. This sea lavender is found in coastal salt marshes which have been under intense human pressure during the past decades resulting in significant habitat fragmentation. Eleven microsatellite loci specifically designed for this species were amplified in 135 individuals from five populations. These markers were used to investigate the polyploid nature, the levels of genetic diversity and population structure in this species. L. narbonense showed high levels of genetic diversity (A = 7.82, P = 100% H T = 0.446), consistent with its likely autotetraploid origin revealed in this study and obligate outcrossing breeding system. Inbreeding (F IS) values were low in the three southern populations (mean F IS = 0.062), and higher in the northern populations (mean F IS = 0.184). Bayesian analysis of population structure revealed that populations could be grouped into two genetic clusters, one including three southern populations and the other the two northernmost ones. Individuals from the two northernmost populations showed higher admixture of the two genetic clusters than individuals from the three southern ones. A thorough analysis of microsatellite electrophoretic patterns suggests an autotetraploid origin for L. narbonense. The genetic structure revealed in this study is attributed to a recent migration from the southern area. This result suggests a net gene flow from the south to the north, likely facilitated by migratory movements of birds visiting the temporary flooded ponds occupied by L. narbonense.
ISSN:0016-6707
1573-6857
DOI:10.1007/s10709-012-9632-2