Loading…

Evidence for structural and functional changes of subplate neurons in developing rat barrel cortex

In the developing sensory cortex, the subplate could serve as a transient relay station between the thalamus and cortical plate and assists the formation of thalamocortical projection. While the thalamus-layer IV connection is formed, the thalamic activation of subplate is diminished. In the present...

Full description

Saved in:
Bibliographic Details
Published in:Brain Structure and Function 2012-04, Vol.217 (2), p.275-292
Main Authors: Liao, Chun-Chieh, Lee, Li-Jen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the developing sensory cortex, the subplate could serve as a transient relay station between the thalamus and cortical plate and assists the formation of thalamocortical projection. While the thalamus-layer IV connection is formed, the thalamic activation of subplate is diminished. In the present study, we aimed to explore the mechanism which may attribute to the decline of subplate activity. To resolve this issue, the developmental changes of subplate neurons (SPns) in rat somatosensory cortex were examined during the first two postnatal weeks which covers the stages prior and subsequent to the establishment of thalamocortical connection. During development, more SPns exhibited regular-spiking firing pattern and the membrane properties of SPns displayed a continual trend of maturation. In the meantime, the excitability of SPns decreased as revealed by increasing rheobase and rightwardly shifted frequency–current curves. On the other hand, increasing paired-pulse ratio and slowing MK-801 blocking rate were noted during development, implying the reduction of presynaptic transmitter release. Morphologically, the size of SPn soma increased with age while the shape became flat. The total length, branching nodes and segments of dendrites increased significantly during the first week. However, after peaking around day 10, these values decreased, implying a pruning process. Our findings here propose that the reduction of neuronal excitability, synaptic transmission and dendritic complexity may attribute to the decline of functional connectivity between thalamus and subplate and reduction of subplate activity while the thalamocortical pathway is established.
ISSN:1863-2653
1863-2661
0340-2061
DOI:10.1007/s00429-011-0354-5