Loading…

Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylose-metabolizing recombinant Saccharomyces cerevisiae

► Cofactor-imbalance is a problem in xylose metabolism by recombinant S. cerevisiae. ► NADH-preferable XR, NAD-dependent XDH and XK were overexpressed in S. cerevisiae. ► Balanced expression of xylose metabolic enzymes reduced a major byproduct, xylitol. ► TAL expression and ALD6 deletion enhanced e...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biotechnology 2012-04, Vol.158 (4), p.184-191
Main Authors: Lee, Sung-Haeng, Kodaki, Tsutomu, Park, Yong-Cheol, Seo, Jin-Ho
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c454t-745120bb49311821417a413324ed9c79996975f7a7dd0d7adf541d4c592b61613
cites cdi_FETCH-LOGICAL-c454t-745120bb49311821417a413324ed9c79996975f7a7dd0d7adf541d4c592b61613
container_end_page 191
container_issue 4
container_start_page 184
container_title Journal of biotechnology
container_volume 158
creator Lee, Sung-Haeng
Kodaki, Tsutomu
Park, Yong-Cheol
Seo, Jin-Ho
description ► Cofactor-imbalance is a problem in xylose metabolism by recombinant S. cerevisiae. ► NADH-preferable XR, NAD-dependent XDH and XK were overexpressed in S. cerevisiae. ► Balanced expression of xylose metabolic enzymes reduced a major byproduct, xylitol. ► TAL expression and ALD6 deletion enhanced ethanol production from xylose considerably. Efficient conversion of xylose to ethanol is an essential factor for commercialization of lignocellulosic ethanol. To minimize production of xylitol, a major by-product in xylose metabolism and concomitantly improve ethanol production, Saccharomyces cerevisiae D452-2 was engineered to overexpress NADH-preferable xylose reductase mutant (XRMUT) and NAD+-dependent xylitol dehydrogenase (XDH) from Pichia stipitis and endogenous xylulokinase (XK). In vitro enzyme assay confirmed the functional expression of XRMUT, XDH and XK in recombinant S. cerevisiae strains. The change of wild type XR to XRMUT along with XK overexpression led to reduction of xylitol accumulation in microaerobic culture. More modulation of the xylose metabolism including overexpression of XRMUT and transaldolase, and disruption of the chromosomal ALD6 gene encoding aldehyde dehydrogenase (SX6MUT) improved the performance of ethanol production from xylose remarkably. Finally, oxygen-limited fermentation of S. cerevisiae SX6MUT resulted in 0.64gl−1h−1 xylose consumption rate, 0.25gl−1h−1 ethanol productivity and 39% ethanol yield based on the xylose consumed, which were 1.8, 4.2 and 2.2 times higher than the corresponding values of recombinant S. cerevisiae expressing XRMUT, XDH and XK only.
doi_str_mv 10.1016/j.jbiotec.2011.06.005
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_993909182</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S016816561100304X</els_id><sourcerecordid>993909182</sourcerecordid><originalsourceid>FETCH-LOGICAL-c454t-745120bb49311821417a413324ed9c79996975f7a7dd0d7adf541d4c592b61613</originalsourceid><addsrcrecordid>eNqFkc1u1DAUhS0EosPAIwDZsUrwTfwzXqGqFIpUwaJ0bTn2detREg92purwHDwwjmbKFtmSr-zvHNv3EPIWaAMUxMdts-1DnNE2LQVoqGgo5c_ICjayq9lGdM_JqnCbGgQXZ-RVzltKKVMcXpKzFoRSqpUr8ufSe7RzrqKvvp9_vqp3CT2mFKa76vEwxIxVQre3sykVPpbTnEOcqjJxvjdTHKpdiguw7PoUxydZmE5VPeJs-jiE34tpQhvHPkxmmqsbY-29KZqDxVxZTPgQcjD4mrzwZsj45rSuye2Xy58XV_X1j6_fLs6va8s4m2vJOLS075nqADYtMJCGQde1DJ2ysvxQKMm9NNI56qRxnjNwzHLV9gIEdGvy4ehbvvBrj3nWY8gWh8FMGPdZK9Upqop1IfmRtCnmXFqkdymMJh00UL3kobf6lIde8tBU6JJH0b073bDvR3T_VE8BFOD9EfAmanOXQta3N8WB02LasTLW5NORwNKJh4BJZxtwsuhC6eWsXQz_ecRfrwCq9w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>993909182</pqid></control><display><type>article</type><title>Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylose-metabolizing recombinant Saccharomyces cerevisiae</title><source>Elsevier</source><creator>Lee, Sung-Haeng ; Kodaki, Tsutomu ; Park, Yong-Cheol ; Seo, Jin-Ho</creator><creatorcontrib>Lee, Sung-Haeng ; Kodaki, Tsutomu ; Park, Yong-Cheol ; Seo, Jin-Ho</creatorcontrib><description>► Cofactor-imbalance is a problem in xylose metabolism by recombinant S. cerevisiae. ► NADH-preferable XR, NAD-dependent XDH and XK were overexpressed in S. cerevisiae. ► Balanced expression of xylose metabolic enzymes reduced a major byproduct, xylitol. ► TAL expression and ALD6 deletion enhanced ethanol production from xylose considerably. Efficient conversion of xylose to ethanol is an essential factor for commercialization of lignocellulosic ethanol. To minimize production of xylitol, a major by-product in xylose metabolism and concomitantly improve ethanol production, Saccharomyces cerevisiae D452-2 was engineered to overexpress NADH-preferable xylose reductase mutant (XRMUT) and NAD+-dependent xylitol dehydrogenase (XDH) from Pichia stipitis and endogenous xylulokinase (XK). In vitro enzyme assay confirmed the functional expression of XRMUT, XDH and XK in recombinant S. cerevisiae strains. The change of wild type XR to XRMUT along with XK overexpression led to reduction of xylitol accumulation in microaerobic culture. More modulation of the xylose metabolism including overexpression of XRMUT and transaldolase, and disruption of the chromosomal ALD6 gene encoding aldehyde dehydrogenase (SX6MUT) improved the performance of ethanol production from xylose remarkably. Finally, oxygen-limited fermentation of S. cerevisiae SX6MUT resulted in 0.64gl−1h−1 xylose consumption rate, 0.25gl−1h−1 ethanol productivity and 39% ethanol yield based on the xylose consumed, which were 1.8, 4.2 and 2.2 times higher than the corresponding values of recombinant S. cerevisiae expressing XRMUT, XDH and XK only.</description><identifier>ISSN: 0168-1656</identifier><identifier>EISSN: 1873-4863</identifier><identifier>DOI: 10.1016/j.jbiotec.2011.06.005</identifier><identifier>PMID: 21699927</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Aerobiosis ; aldehyde dehydrogenase ; Aldehyde Oxidoreductases - genetics ; Aldehyde Oxidoreductases - metabolism ; Aldehyde Reductase - genetics ; Aldehyde Reductase - metabolism ; commercialization ; D-Xylulose Reductase - biosynthesis ; D-Xylulose Reductase - genetics ; D-Xylulose Reductase - metabolism ; Ethanol ; Ethanol - metabolism ; ethanol production ; Fermentation ; Gene Expression ; gene overexpression ; genes ; Genes, Fungal ; lignocellulose ; Metabolic Engineering - methods ; mutants ; Mutation - genetics ; NAD - genetics ; NAD - metabolism ; NADH-preferable xylose reductase ; NADP - genetics ; NADP - metabolism ; Phosphotransferases (Alcohol Group Acceptor) - genetics ; Phosphotransferases (Alcohol Group Acceptor) - metabolism ; Pichia - enzymology ; Pichia - genetics ; Pichia - metabolism ; Recombination, Genetic ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - enzymology ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - biosynthesis ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Scheffersomyces stipitis ; transaldolase ; Transaldolase - genetics ; Transaldolase - metabolism ; xylitol ; Xylitol - genetics ; Xylitol - metabolism ; Xylose ; Xylose - genetics ; Xylose - metabolism</subject><ispartof>Journal of biotechnology, 2012-04, Vol.158 (4), p.184-191</ispartof><rights>2011 Elsevier B.V.</rights><rights>Copyright © 2011 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c454t-745120bb49311821417a413324ed9c79996975f7a7dd0d7adf541d4c592b61613</citedby><cites>FETCH-LOGICAL-c454t-745120bb49311821417a413324ed9c79996975f7a7dd0d7adf541d4c592b61613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21699927$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Sung-Haeng</creatorcontrib><creatorcontrib>Kodaki, Tsutomu</creatorcontrib><creatorcontrib>Park, Yong-Cheol</creatorcontrib><creatorcontrib>Seo, Jin-Ho</creatorcontrib><title>Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylose-metabolizing recombinant Saccharomyces cerevisiae</title><title>Journal of biotechnology</title><addtitle>J Biotechnol</addtitle><description>► Cofactor-imbalance is a problem in xylose metabolism by recombinant S. cerevisiae. ► NADH-preferable XR, NAD-dependent XDH and XK were overexpressed in S. cerevisiae. ► Balanced expression of xylose metabolic enzymes reduced a major byproduct, xylitol. ► TAL expression and ALD6 deletion enhanced ethanol production from xylose considerably. Efficient conversion of xylose to ethanol is an essential factor for commercialization of lignocellulosic ethanol. To minimize production of xylitol, a major by-product in xylose metabolism and concomitantly improve ethanol production, Saccharomyces cerevisiae D452-2 was engineered to overexpress NADH-preferable xylose reductase mutant (XRMUT) and NAD+-dependent xylitol dehydrogenase (XDH) from Pichia stipitis and endogenous xylulokinase (XK). In vitro enzyme assay confirmed the functional expression of XRMUT, XDH and XK in recombinant S. cerevisiae strains. The change of wild type XR to XRMUT along with XK overexpression led to reduction of xylitol accumulation in microaerobic culture. More modulation of the xylose metabolism including overexpression of XRMUT and transaldolase, and disruption of the chromosomal ALD6 gene encoding aldehyde dehydrogenase (SX6MUT) improved the performance of ethanol production from xylose remarkably. Finally, oxygen-limited fermentation of S. cerevisiae SX6MUT resulted in 0.64gl−1h−1 xylose consumption rate, 0.25gl−1h−1 ethanol productivity and 39% ethanol yield based on the xylose consumed, which were 1.8, 4.2 and 2.2 times higher than the corresponding values of recombinant S. cerevisiae expressing XRMUT, XDH and XK only.</description><subject>Aerobiosis</subject><subject>aldehyde dehydrogenase</subject><subject>Aldehyde Oxidoreductases - genetics</subject><subject>Aldehyde Oxidoreductases - metabolism</subject><subject>Aldehyde Reductase - genetics</subject><subject>Aldehyde Reductase - metabolism</subject><subject>commercialization</subject><subject>D-Xylulose Reductase - biosynthesis</subject><subject>D-Xylulose Reductase - genetics</subject><subject>D-Xylulose Reductase - metabolism</subject><subject>Ethanol</subject><subject>Ethanol - metabolism</subject><subject>ethanol production</subject><subject>Fermentation</subject><subject>Gene Expression</subject><subject>gene overexpression</subject><subject>genes</subject><subject>Genes, Fungal</subject><subject>lignocellulose</subject><subject>Metabolic Engineering - methods</subject><subject>mutants</subject><subject>Mutation - genetics</subject><subject>NAD - genetics</subject><subject>NAD - metabolism</subject><subject>NADH-preferable xylose reductase</subject><subject>NADP - genetics</subject><subject>NADP - metabolism</subject><subject>Phosphotransferases (Alcohol Group Acceptor) - genetics</subject><subject>Phosphotransferases (Alcohol Group Acceptor) - metabolism</subject><subject>Pichia - enzymology</subject><subject>Pichia - genetics</subject><subject>Pichia - metabolism</subject><subject>Recombination, Genetic</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - enzymology</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - biosynthesis</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Scheffersomyces stipitis</subject><subject>transaldolase</subject><subject>Transaldolase - genetics</subject><subject>Transaldolase - metabolism</subject><subject>xylitol</subject><subject>Xylitol - genetics</subject><subject>Xylitol - metabolism</subject><subject>Xylose</subject><subject>Xylose - genetics</subject><subject>Xylose - metabolism</subject><issn>0168-1656</issn><issn>1873-4863</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkc1u1DAUhS0EosPAIwDZsUrwTfwzXqGqFIpUwaJ0bTn2detREg92purwHDwwjmbKFtmSr-zvHNv3EPIWaAMUxMdts-1DnNE2LQVoqGgo5c_ICjayq9lGdM_JqnCbGgQXZ-RVzltKKVMcXpKzFoRSqpUr8ufSe7RzrqKvvp9_vqp3CT2mFKa76vEwxIxVQre3sykVPpbTnEOcqjJxvjdTHKpdiguw7PoUxydZmE5VPeJs-jiE34tpQhvHPkxmmqsbY-29KZqDxVxZTPgQcjD4mrzwZsj45rSuye2Xy58XV_X1j6_fLs6va8s4m2vJOLS075nqADYtMJCGQde1DJ2ysvxQKMm9NNI56qRxnjNwzHLV9gIEdGvy4ehbvvBrj3nWY8gWh8FMGPdZK9Upqop1IfmRtCnmXFqkdymMJh00UL3kobf6lIde8tBU6JJH0b073bDvR3T_VE8BFOD9EfAmanOXQta3N8WB02LasTLW5NORwNKJh4BJZxtwsuhC6eWsXQz_ecRfrwCq9w</recordid><startdate>20120430</startdate><enddate>20120430</enddate><creator>Lee, Sung-Haeng</creator><creator>Kodaki, Tsutomu</creator><creator>Park, Yong-Cheol</creator><creator>Seo, Jin-Ho</creator><general>Elsevier B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20120430</creationdate><title>Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylose-metabolizing recombinant Saccharomyces cerevisiae</title><author>Lee, Sung-Haeng ; Kodaki, Tsutomu ; Park, Yong-Cheol ; Seo, Jin-Ho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c454t-745120bb49311821417a413324ed9c79996975f7a7dd0d7adf541d4c592b61613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Aerobiosis</topic><topic>aldehyde dehydrogenase</topic><topic>Aldehyde Oxidoreductases - genetics</topic><topic>Aldehyde Oxidoreductases - metabolism</topic><topic>Aldehyde Reductase - genetics</topic><topic>Aldehyde Reductase - metabolism</topic><topic>commercialization</topic><topic>D-Xylulose Reductase - biosynthesis</topic><topic>D-Xylulose Reductase - genetics</topic><topic>D-Xylulose Reductase - metabolism</topic><topic>Ethanol</topic><topic>Ethanol - metabolism</topic><topic>ethanol production</topic><topic>Fermentation</topic><topic>Gene Expression</topic><topic>gene overexpression</topic><topic>genes</topic><topic>Genes, Fungal</topic><topic>lignocellulose</topic><topic>Metabolic Engineering - methods</topic><topic>mutants</topic><topic>Mutation - genetics</topic><topic>NAD - genetics</topic><topic>NAD - metabolism</topic><topic>NADH-preferable xylose reductase</topic><topic>NADP - genetics</topic><topic>NADP - metabolism</topic><topic>Phosphotransferases (Alcohol Group Acceptor) - genetics</topic><topic>Phosphotransferases (Alcohol Group Acceptor) - metabolism</topic><topic>Pichia - enzymology</topic><topic>Pichia - genetics</topic><topic>Pichia - metabolism</topic><topic>Recombination, Genetic</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - enzymology</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - biosynthesis</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Scheffersomyces stipitis</topic><topic>transaldolase</topic><topic>Transaldolase - genetics</topic><topic>Transaldolase - metabolism</topic><topic>xylitol</topic><topic>Xylitol - genetics</topic><topic>Xylitol - metabolism</topic><topic>Xylose</topic><topic>Xylose - genetics</topic><topic>Xylose - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Sung-Haeng</creatorcontrib><creatorcontrib>Kodaki, Tsutomu</creatorcontrib><creatorcontrib>Park, Yong-Cheol</creatorcontrib><creatorcontrib>Seo, Jin-Ho</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Sung-Haeng</au><au>Kodaki, Tsutomu</au><au>Park, Yong-Cheol</au><au>Seo, Jin-Ho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylose-metabolizing recombinant Saccharomyces cerevisiae</atitle><jtitle>Journal of biotechnology</jtitle><addtitle>J Biotechnol</addtitle><date>2012-04-30</date><risdate>2012</risdate><volume>158</volume><issue>4</issue><spage>184</spage><epage>191</epage><pages>184-191</pages><issn>0168-1656</issn><eissn>1873-4863</eissn><abstract>► Cofactor-imbalance is a problem in xylose metabolism by recombinant S. cerevisiae. ► NADH-preferable XR, NAD-dependent XDH and XK were overexpressed in S. cerevisiae. ► Balanced expression of xylose metabolic enzymes reduced a major byproduct, xylitol. ► TAL expression and ALD6 deletion enhanced ethanol production from xylose considerably. Efficient conversion of xylose to ethanol is an essential factor for commercialization of lignocellulosic ethanol. To minimize production of xylitol, a major by-product in xylose metabolism and concomitantly improve ethanol production, Saccharomyces cerevisiae D452-2 was engineered to overexpress NADH-preferable xylose reductase mutant (XRMUT) and NAD+-dependent xylitol dehydrogenase (XDH) from Pichia stipitis and endogenous xylulokinase (XK). In vitro enzyme assay confirmed the functional expression of XRMUT, XDH and XK in recombinant S. cerevisiae strains. The change of wild type XR to XRMUT along with XK overexpression led to reduction of xylitol accumulation in microaerobic culture. More modulation of the xylose metabolism including overexpression of XRMUT and transaldolase, and disruption of the chromosomal ALD6 gene encoding aldehyde dehydrogenase (SX6MUT) improved the performance of ethanol production from xylose remarkably. Finally, oxygen-limited fermentation of S. cerevisiae SX6MUT resulted in 0.64gl−1h−1 xylose consumption rate, 0.25gl−1h−1 ethanol productivity and 39% ethanol yield based on the xylose consumed, which were 1.8, 4.2 and 2.2 times higher than the corresponding values of recombinant S. cerevisiae expressing XRMUT, XDH and XK only.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>21699927</pmid><doi>10.1016/j.jbiotec.2011.06.005</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0168-1656
ispartof Journal of biotechnology, 2012-04, Vol.158 (4), p.184-191
issn 0168-1656
1873-4863
language eng
recordid cdi_proquest_miscellaneous_993909182
source Elsevier
subjects Aerobiosis
aldehyde dehydrogenase
Aldehyde Oxidoreductases - genetics
Aldehyde Oxidoreductases - metabolism
Aldehyde Reductase - genetics
Aldehyde Reductase - metabolism
commercialization
D-Xylulose Reductase - biosynthesis
D-Xylulose Reductase - genetics
D-Xylulose Reductase - metabolism
Ethanol
Ethanol - metabolism
ethanol production
Fermentation
Gene Expression
gene overexpression
genes
Genes, Fungal
lignocellulose
Metabolic Engineering - methods
mutants
Mutation - genetics
NAD - genetics
NAD - metabolism
NADH-preferable xylose reductase
NADP - genetics
NADP - metabolism
Phosphotransferases (Alcohol Group Acceptor) - genetics
Phosphotransferases (Alcohol Group Acceptor) - metabolism
Pichia - enzymology
Pichia - genetics
Pichia - metabolism
Recombination, Genetic
Saccharomyces cerevisiae
Saccharomyces cerevisiae - enzymology
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - biosynthesis
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Scheffersomyces stipitis
transaldolase
Transaldolase - genetics
Transaldolase - metabolism
xylitol
Xylitol - genetics
Xylitol - metabolism
Xylose
Xylose - genetics
Xylose - metabolism
title Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylose-metabolizing recombinant Saccharomyces cerevisiae
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T04%3A26%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20NADH-preferring%20xylose%20reductase%20expression%20on%20ethanol%20production%20from%20xylose%20in%20xylose-metabolizing%20recombinant%20Saccharomyces%20cerevisiae&rft.jtitle=Journal%20of%20biotechnology&rft.au=Lee,%20Sung-Haeng&rft.date=2012-04-30&rft.volume=158&rft.issue=4&rft.spage=184&rft.epage=191&rft.pages=184-191&rft.issn=0168-1656&rft.eissn=1873-4863&rft_id=info:doi/10.1016/j.jbiotec.2011.06.005&rft_dat=%3Cproquest_cross%3E993909182%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c454t-745120bb49311821417a413324ed9c79996975f7a7dd0d7adf541d4c592b61613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=993909182&rft_id=info:pmid/21699927&rfr_iscdi=true