Loading…
The role of tuberous sclerosis complex 1 in regulating innate immunity
The mechanisms that control TLR-induced responses, including endotoxin tolerance, have been not well understood. The tuberous sclerosis complex 1 (TSC1) is a tumor suppressor that inhibits the mammalian target of rapamycin (mTOR). We show in this study that deficiency of TSC1 results in enhanced act...
Saved in:
Published in: | The Journal of immunology (1950) 2012-04, Vol.188 (8), p.3658-3666 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The mechanisms that control TLR-induced responses, including endotoxin tolerance, have been not well understood. The tuberous sclerosis complex 1 (TSC1) is a tumor suppressor that inhibits the mammalian target of rapamycin (mTOR). We show in this study that deficiency of TSC1 results in enhanced activation of not only mTOR complex 1 (mTORC1), but also JNK1/2, following LPS stimulation in macrophages. TSC1-deficient macrophages produce elevated proinflammatory cytokines and NO in response to multiple TLR ligands. Such enhanced TLR-induced responses can be inhibited by reducing mTORC1 and JNK1/2 activities with chemical inhibitors or small hairpin RNA, suggesting that TSC1 negatively controls TLR responses through both mTORC1 and JNK1/2. The impact of TSC1 deficiency appeared not limited to TLRs, as NOD- and RIG-I/MDA-5-induced innate responses were also altered in TSC1-deficient macrophages. Furthermore, TSC1 deficiency appears to cause impaired induction of endotoxin tolerance in vitro and in vivo, which is correlated with increased JNK1/2 activation and can be reversed by JNK1/2 inhibition. Our results reveal a critical role of TSC1 in regulating innate immunity by negative control of mTORC1 and JNK1/2 activation. |
---|---|
ISSN: | 0022-1767 1550-6606 |
DOI: | 10.4049/jimmunol.1102187 |