Loading…
Structure and thermodynamics of oxides/carbides/nitrides/borides at high temperatures
Humankind has an innate appetite for exploration, energy, and speed. These areas all require materials that operate in extreme environments, for example, temperatures above 1,500 degrees C. While exploring the universe can be cold, reentry into a planet's atmosphere can be hot. Energy productio...
Saved in:
Published in: | American Ceramic Society. American Ceramic Society Bulletin 2023-03, Vol.102 (2), p.28 |
---|---|
Main Authors: | , , , , |
Format: | Magazinearticle |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 2 |
container_start_page | 28 |
container_title | American Ceramic Society. American Ceramic Society Bulletin |
container_volume | 102 |
creator | Hong, Qi-Jun Ushakov, Sergey V Lilova, Kristina Navrotsky, Alexandra McCormack, Scott J |
description | Humankind has an innate appetite for exploration, energy, and speed. These areas all require materials that operate in extreme environments, for example, temperatures above 1,500 degrees C. While exploring the universe can be cold, reentry into a planet's atmosphere can be hot. Energy production through nuclear fission can reach temperatures of up to about 1,700 degrees C and even higher for nuclear fusion, while nuclear thermal propulsion systems require temperatures up to about 2,800 degrees C to provide thrust to propel next-generation spacecrafts to Mars and beyond. When traveling at hypersonic speeds on Earth, leading edges can reach temperatures of about 2,700 degrees C at Mach 8. High-temperature thermal barrier systems as well as high-temperature environmental barrier coatings are required to protect both people and equipment on board from these high temperatures. To effectively design high-temperature material systems, one must have a clear understanding of both their thermodynamic properties and atomic structure. Understanding thermodynamics is essential to determining the longevity (stability) of a system in its operating environment, while atomic structure influences the desired material properties (e.g., mechanical, thermal, electrical, optical). |
format | magazinearticle |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_reports_2778655741</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2778655741</sourcerecordid><originalsourceid>FETCH-LOGICAL-p182t-ce3ebe11ccdc9e481838a998ea40291e778b5f64f3b451b24d46178fa8ddc313</originalsourceid><addsrcrecordid>eNotjEtLxDAURoMoWEf_Q3BfzM2jSZcy-IIBF47rIY9bW7FNTVLQf-9YXZ3zLb5zQipopaq5ZuqUVIwxXmsD_Jxc5Px-nABcV-T1paTFlyUhtVOgpcc0xvA92XHwmcaOxq8hYL7xNrlVpqGkVVxcSW2h_fDW04LjjMn-pvIlOevsR8arf27I_v5uv32sd88PT9vbXT2D4aX2KNAhgPfBtygNGGFs2xq0kvEWUGvjVNfITjipwHEZZAPadNaE4AWIDbn-y84pfi6YyyHhHFPJB368NkppCeIHWbJOug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>magazinearticle</recordtype><pqid>2778655741</pqid></control><display><type>magazinearticle</type><title>Structure and thermodynamics of oxides/carbides/nitrides/borides at high temperatures</title><source>EBSCOhost Art & Architecture Source</source><creator>Hong, Qi-Jun ; Ushakov, Sergey V ; Lilova, Kristina ; Navrotsky, Alexandra ; McCormack, Scott J</creator><creatorcontrib>Hong, Qi-Jun ; Ushakov, Sergey V ; Lilova, Kristina ; Navrotsky, Alexandra ; McCormack, Scott J</creatorcontrib><description>Humankind has an innate appetite for exploration, energy, and speed. These areas all require materials that operate in extreme environments, for example, temperatures above 1,500 degrees C. While exploring the universe can be cold, reentry into a planet's atmosphere can be hot. Energy production through nuclear fission can reach temperatures of up to about 1,700 degrees C and even higher for nuclear fusion, while nuclear thermal propulsion systems require temperatures up to about 2,800 degrees C to provide thrust to propel next-generation spacecrafts to Mars and beyond. When traveling at hypersonic speeds on Earth, leading edges can reach temperatures of about 2,700 degrees C at Mach 8. High-temperature thermal barrier systems as well as high-temperature environmental barrier coatings are required to protect both people and equipment on board from these high temperatures. To effectively design high-temperature material systems, one must have a clear understanding of both their thermodynamic properties and atomic structure. Understanding thermodynamics is essential to determining the longevity (stability) of a system in its operating environment, while atomic structure influences the desired material properties (e.g., mechanical, thermal, electrical, optical).</description><identifier>ISSN: 0002-7812</identifier><identifier>EISSN: 1945-2705</identifier><language>eng</language><publisher>Columbus: American Ceramic Society</publisher><subject>Atmospheric entry ; Atomic structure ; Borides ; Extreme environments ; High temperature ; Leading edges ; Material properties ; Mechanical properties ; Nuclear fission ; Nuclear fusion ; Nuclear thermal propulsion ; Onboard equipment ; Optical properties ; Planetary atmospheres ; Propulsion systems ; System effectiveness ; Thermodynamic properties ; Thermodynamics</subject><ispartof>American Ceramic Society. American Ceramic Society Bulletin, 2023-03, Vol.102 (2), p.28</ispartof><rights>Copyright American Ceramic Society Mar 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>312,776,780,787</link.rule.ids></links><search><creatorcontrib>Hong, Qi-Jun</creatorcontrib><creatorcontrib>Ushakov, Sergey V</creatorcontrib><creatorcontrib>Lilova, Kristina</creatorcontrib><creatorcontrib>Navrotsky, Alexandra</creatorcontrib><creatorcontrib>McCormack, Scott J</creatorcontrib><title>Structure and thermodynamics of oxides/carbides/nitrides/borides at high temperatures</title><title>American Ceramic Society. American Ceramic Society Bulletin</title><description>Humankind has an innate appetite for exploration, energy, and speed. These areas all require materials that operate in extreme environments, for example, temperatures above 1,500 degrees C. While exploring the universe can be cold, reentry into a planet's atmosphere can be hot. Energy production through nuclear fission can reach temperatures of up to about 1,700 degrees C and even higher for nuclear fusion, while nuclear thermal propulsion systems require temperatures up to about 2,800 degrees C to provide thrust to propel next-generation spacecrafts to Mars and beyond. When traveling at hypersonic speeds on Earth, leading edges can reach temperatures of about 2,700 degrees C at Mach 8. High-temperature thermal barrier systems as well as high-temperature environmental barrier coatings are required to protect both people and equipment on board from these high temperatures. To effectively design high-temperature material systems, one must have a clear understanding of both their thermodynamic properties and atomic structure. Understanding thermodynamics is essential to determining the longevity (stability) of a system in its operating environment, while atomic structure influences the desired material properties (e.g., mechanical, thermal, electrical, optical).</description><subject>Atmospheric entry</subject><subject>Atomic structure</subject><subject>Borides</subject><subject>Extreme environments</subject><subject>High temperature</subject><subject>Leading edges</subject><subject>Material properties</subject><subject>Mechanical properties</subject><subject>Nuclear fission</subject><subject>Nuclear fusion</subject><subject>Nuclear thermal propulsion</subject><subject>Onboard equipment</subject><subject>Optical properties</subject><subject>Planetary atmospheres</subject><subject>Propulsion systems</subject><subject>System effectiveness</subject><subject>Thermodynamic properties</subject><subject>Thermodynamics</subject><issn>0002-7812</issn><issn>1945-2705</issn><fulltext>true</fulltext><rsrctype>magazinearticle</rsrctype><creationdate>2023</creationdate><recordtype>magazinearticle</recordtype><recordid>eNotjEtLxDAURoMoWEf_Q3BfzM2jSZcy-IIBF47rIY9bW7FNTVLQf-9YXZ3zLb5zQipopaq5ZuqUVIwxXmsD_Jxc5Px-nABcV-T1paTFlyUhtVOgpcc0xvA92XHwmcaOxq8hYL7xNrlVpqGkVVxcSW2h_fDW04LjjMn-pvIlOevsR8arf27I_v5uv32sd88PT9vbXT2D4aX2KNAhgPfBtygNGGFs2xq0kvEWUGvjVNfITjipwHEZZAPadNaE4AWIDbn-y84pfi6YyyHhHFPJB368NkppCeIHWbJOug</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Hong, Qi-Jun</creator><creator>Ushakov, Sergey V</creator><creator>Lilova, Kristina</creator><creator>Navrotsky, Alexandra</creator><creator>McCormack, Scott J</creator><general>American Ceramic Society</general><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20230301</creationdate><title>Structure and thermodynamics of oxides/carbides/nitrides/borides at high temperatures</title><author>Hong, Qi-Jun ; Ushakov, Sergey V ; Lilova, Kristina ; Navrotsky, Alexandra ; McCormack, Scott J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p182t-ce3ebe11ccdc9e481838a998ea40291e778b5f64f3b451b24d46178fa8ddc313</frbrgroupid><rsrctype>magazinearticle</rsrctype><prefilter>magazinearticle</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Atmospheric entry</topic><topic>Atomic structure</topic><topic>Borides</topic><topic>Extreme environments</topic><topic>High temperature</topic><topic>Leading edges</topic><topic>Material properties</topic><topic>Mechanical properties</topic><topic>Nuclear fission</topic><topic>Nuclear fusion</topic><topic>Nuclear thermal propulsion</topic><topic>Onboard equipment</topic><topic>Optical properties</topic><topic>Planetary atmospheres</topic><topic>Propulsion systems</topic><topic>System effectiveness</topic><topic>Thermodynamic properties</topic><topic>Thermodynamics</topic><toplevel>online_resources</toplevel><creatorcontrib>Hong, Qi-Jun</creatorcontrib><creatorcontrib>Ushakov, Sergey V</creatorcontrib><creatorcontrib>Lilova, Kristina</creatorcontrib><creatorcontrib>Navrotsky, Alexandra</creatorcontrib><creatorcontrib>McCormack, Scott J</creatorcontrib><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>American Ceramic Society. American Ceramic Society Bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hong, Qi-Jun</au><au>Ushakov, Sergey V</au><au>Lilova, Kristina</au><au>Navrotsky, Alexandra</au><au>McCormack, Scott J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure and thermodynamics of oxides/carbides/nitrides/borides at high temperatures</atitle><jtitle>American Ceramic Society. American Ceramic Society Bulletin</jtitle><date>2023-03-01</date><risdate>2023</risdate><volume>102</volume><issue>2</issue><spage>28</spage><pages>28-</pages><issn>0002-7812</issn><eissn>1945-2705</eissn><abstract>Humankind has an innate appetite for exploration, energy, and speed. These areas all require materials that operate in extreme environments, for example, temperatures above 1,500 degrees C. While exploring the universe can be cold, reentry into a planet's atmosphere can be hot. Energy production through nuclear fission can reach temperatures of up to about 1,700 degrees C and even higher for nuclear fusion, while nuclear thermal propulsion systems require temperatures up to about 2,800 degrees C to provide thrust to propel next-generation spacecrafts to Mars and beyond. When traveling at hypersonic speeds on Earth, leading edges can reach temperatures of about 2,700 degrees C at Mach 8. High-temperature thermal barrier systems as well as high-temperature environmental barrier coatings are required to protect both people and equipment on board from these high temperatures. To effectively design high-temperature material systems, one must have a clear understanding of both their thermodynamic properties and atomic structure. Understanding thermodynamics is essential to determining the longevity (stability) of a system in its operating environment, while atomic structure influences the desired material properties (e.g., mechanical, thermal, electrical, optical).</abstract><cop>Columbus</cop><pub>American Ceramic Society</pub></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7812 |
ispartof | American Ceramic Society. American Ceramic Society Bulletin, 2023-03, Vol.102 (2), p.28 |
issn | 0002-7812 1945-2705 |
language | eng |
recordid | cdi_proquest_reports_2778655741 |
source | EBSCOhost Art & Architecture Source |
subjects | Atmospheric entry Atomic structure Borides Extreme environments High temperature Leading edges Material properties Mechanical properties Nuclear fission Nuclear fusion Nuclear thermal propulsion Onboard equipment Optical properties Planetary atmospheres Propulsion systems System effectiveness Thermodynamic properties Thermodynamics |
title | Structure and thermodynamics of oxides/carbides/nitrides/borides at high temperatures |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A49%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20and%20thermodynamics%20of%20oxides/carbides/nitrides/borides%20at%20high%20temperatures&rft.jtitle=American%20Ceramic%20Society.%20American%20Ceramic%20Society%20Bulletin&rft.au=Hong,%20Qi-Jun&rft.date=2023-03-01&rft.volume=102&rft.issue=2&rft.spage=28&rft.pages=28-&rft.issn=0002-7812&rft.eissn=1945-2705&rft_id=info:doi/&rft_dat=%3Cproquest%3E2778655741%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p182t-ce3ebe11ccdc9e481838a998ea40291e778b5f64f3b451b24d46178fa8ddc313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2778655741&rft_id=info:pmid/&rfr_iscdi=true |