Loading…

Structure and thermodynamics of oxides/carbides/nitrides/borides at high temperatures

Humankind has an innate appetite for exploration, energy, and speed. These areas all require materials that operate in extreme environments, for example, temperatures above 1,500 degrees C. While exploring the universe can be cold, reentry into a planet's atmosphere can be hot. Energy productio...

Full description

Saved in:
Bibliographic Details
Published in:American Ceramic Society. American Ceramic Society Bulletin 2023-03, Vol.102 (2), p.28
Main Authors: Hong, Qi-Jun, Ushakov, Sergey V, Lilova, Kristina, Navrotsky, Alexandra, McCormack, Scott J
Format: Magazinearticle
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 2
container_start_page 28
container_title American Ceramic Society. American Ceramic Society Bulletin
container_volume 102
creator Hong, Qi-Jun
Ushakov, Sergey V
Lilova, Kristina
Navrotsky, Alexandra
McCormack, Scott J
description Humankind has an innate appetite for exploration, energy, and speed. These areas all require materials that operate in extreme environments, for example, temperatures above 1,500 degrees C. While exploring the universe can be cold, reentry into a planet's atmosphere can be hot. Energy production through nuclear fission can reach temperatures of up to about 1,700 degrees C and even higher for nuclear fusion, while nuclear thermal propulsion systems require temperatures up to about 2,800 degrees C to provide thrust to propel next-generation spacecrafts to Mars and beyond. When traveling at hypersonic speeds on Earth, leading edges can reach temperatures of about 2,700 degrees C at Mach 8. High-temperature thermal barrier systems as well as high-temperature environmental barrier coatings are required to protect both people and equipment on board from these high temperatures. To effectively design high-temperature material systems, one must have a clear understanding of both their thermodynamic properties and atomic structure. Understanding thermodynamics is essential to determining the longevity (stability) of a system in its operating environment, while atomic structure influences the desired material properties (e.g., mechanical, thermal, electrical, optical).
format magazinearticle
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_reports_2778655741</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2778655741</sourcerecordid><originalsourceid>FETCH-LOGICAL-p182t-ce3ebe11ccdc9e481838a998ea40291e778b5f64f3b451b24d46178fa8ddc313</originalsourceid><addsrcrecordid>eNotjEtLxDAURoMoWEf_Q3BfzM2jSZcy-IIBF47rIY9bW7FNTVLQf-9YXZ3zLb5zQipopaq5ZuqUVIwxXmsD_Jxc5Px-nABcV-T1paTFlyUhtVOgpcc0xvA92XHwmcaOxq8hYL7xNrlVpqGkVVxcSW2h_fDW04LjjMn-pvIlOevsR8arf27I_v5uv32sd88PT9vbXT2D4aX2KNAhgPfBtygNGGFs2xq0kvEWUGvjVNfITjipwHEZZAPadNaE4AWIDbn-y84pfi6YyyHhHFPJB368NkppCeIHWbJOug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>magazinearticle</recordtype><pqid>2778655741</pqid></control><display><type>magazinearticle</type><title>Structure and thermodynamics of oxides/carbides/nitrides/borides at high temperatures</title><source>EBSCOhost Art &amp; Architecture Source</source><creator>Hong, Qi-Jun ; Ushakov, Sergey V ; Lilova, Kristina ; Navrotsky, Alexandra ; McCormack, Scott J</creator><creatorcontrib>Hong, Qi-Jun ; Ushakov, Sergey V ; Lilova, Kristina ; Navrotsky, Alexandra ; McCormack, Scott J</creatorcontrib><description>Humankind has an innate appetite for exploration, energy, and speed. These areas all require materials that operate in extreme environments, for example, temperatures above 1,500 degrees C. While exploring the universe can be cold, reentry into a planet's atmosphere can be hot. Energy production through nuclear fission can reach temperatures of up to about 1,700 degrees C and even higher for nuclear fusion, while nuclear thermal propulsion systems require temperatures up to about 2,800 degrees C to provide thrust to propel next-generation spacecrafts to Mars and beyond. When traveling at hypersonic speeds on Earth, leading edges can reach temperatures of about 2,700 degrees C at Mach 8. High-temperature thermal barrier systems as well as high-temperature environmental barrier coatings are required to protect both people and equipment on board from these high temperatures. To effectively design high-temperature material systems, one must have a clear understanding of both their thermodynamic properties and atomic structure. Understanding thermodynamics is essential to determining the longevity (stability) of a system in its operating environment, while atomic structure influences the desired material properties (e.g., mechanical, thermal, electrical, optical).</description><identifier>ISSN: 0002-7812</identifier><identifier>EISSN: 1945-2705</identifier><language>eng</language><publisher>Columbus: American Ceramic Society</publisher><subject>Atmospheric entry ; Atomic structure ; Borides ; Extreme environments ; High temperature ; Leading edges ; Material properties ; Mechanical properties ; Nuclear fission ; Nuclear fusion ; Nuclear thermal propulsion ; Onboard equipment ; Optical properties ; Planetary atmospheres ; Propulsion systems ; System effectiveness ; Thermodynamic properties ; Thermodynamics</subject><ispartof>American Ceramic Society. American Ceramic Society Bulletin, 2023-03, Vol.102 (2), p.28</ispartof><rights>Copyright American Ceramic Society Mar 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>312,776,780,787</link.rule.ids></links><search><creatorcontrib>Hong, Qi-Jun</creatorcontrib><creatorcontrib>Ushakov, Sergey V</creatorcontrib><creatorcontrib>Lilova, Kristina</creatorcontrib><creatorcontrib>Navrotsky, Alexandra</creatorcontrib><creatorcontrib>McCormack, Scott J</creatorcontrib><title>Structure and thermodynamics of oxides/carbides/nitrides/borides at high temperatures</title><title>American Ceramic Society. American Ceramic Society Bulletin</title><description>Humankind has an innate appetite for exploration, energy, and speed. These areas all require materials that operate in extreme environments, for example, temperatures above 1,500 degrees C. While exploring the universe can be cold, reentry into a planet's atmosphere can be hot. Energy production through nuclear fission can reach temperatures of up to about 1,700 degrees C and even higher for nuclear fusion, while nuclear thermal propulsion systems require temperatures up to about 2,800 degrees C to provide thrust to propel next-generation spacecrafts to Mars and beyond. When traveling at hypersonic speeds on Earth, leading edges can reach temperatures of about 2,700 degrees C at Mach 8. High-temperature thermal barrier systems as well as high-temperature environmental barrier coatings are required to protect both people and equipment on board from these high temperatures. To effectively design high-temperature material systems, one must have a clear understanding of both their thermodynamic properties and atomic structure. Understanding thermodynamics is essential to determining the longevity (stability) of a system in its operating environment, while atomic structure influences the desired material properties (e.g., mechanical, thermal, electrical, optical).</description><subject>Atmospheric entry</subject><subject>Atomic structure</subject><subject>Borides</subject><subject>Extreme environments</subject><subject>High temperature</subject><subject>Leading edges</subject><subject>Material properties</subject><subject>Mechanical properties</subject><subject>Nuclear fission</subject><subject>Nuclear fusion</subject><subject>Nuclear thermal propulsion</subject><subject>Onboard equipment</subject><subject>Optical properties</subject><subject>Planetary atmospheres</subject><subject>Propulsion systems</subject><subject>System effectiveness</subject><subject>Thermodynamic properties</subject><subject>Thermodynamics</subject><issn>0002-7812</issn><issn>1945-2705</issn><fulltext>true</fulltext><rsrctype>magazinearticle</rsrctype><creationdate>2023</creationdate><recordtype>magazinearticle</recordtype><recordid>eNotjEtLxDAURoMoWEf_Q3BfzM2jSZcy-IIBF47rIY9bW7FNTVLQf-9YXZ3zLb5zQipopaq5ZuqUVIwxXmsD_Jxc5Px-nABcV-T1paTFlyUhtVOgpcc0xvA92XHwmcaOxq8hYL7xNrlVpqGkVVxcSW2h_fDW04LjjMn-pvIlOevsR8arf27I_v5uv32sd88PT9vbXT2D4aX2KNAhgPfBtygNGGFs2xq0kvEWUGvjVNfITjipwHEZZAPadNaE4AWIDbn-y84pfi6YyyHhHFPJB368NkppCeIHWbJOug</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Hong, Qi-Jun</creator><creator>Ushakov, Sergey V</creator><creator>Lilova, Kristina</creator><creator>Navrotsky, Alexandra</creator><creator>McCormack, Scott J</creator><general>American Ceramic Society</general><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20230301</creationdate><title>Structure and thermodynamics of oxides/carbides/nitrides/borides at high temperatures</title><author>Hong, Qi-Jun ; Ushakov, Sergey V ; Lilova, Kristina ; Navrotsky, Alexandra ; McCormack, Scott J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p182t-ce3ebe11ccdc9e481838a998ea40291e778b5f64f3b451b24d46178fa8ddc313</frbrgroupid><rsrctype>magazinearticle</rsrctype><prefilter>magazinearticle</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Atmospheric entry</topic><topic>Atomic structure</topic><topic>Borides</topic><topic>Extreme environments</topic><topic>High temperature</topic><topic>Leading edges</topic><topic>Material properties</topic><topic>Mechanical properties</topic><topic>Nuclear fission</topic><topic>Nuclear fusion</topic><topic>Nuclear thermal propulsion</topic><topic>Onboard equipment</topic><topic>Optical properties</topic><topic>Planetary atmospheres</topic><topic>Propulsion systems</topic><topic>System effectiveness</topic><topic>Thermodynamic properties</topic><topic>Thermodynamics</topic><toplevel>online_resources</toplevel><creatorcontrib>Hong, Qi-Jun</creatorcontrib><creatorcontrib>Ushakov, Sergey V</creatorcontrib><creatorcontrib>Lilova, Kristina</creatorcontrib><creatorcontrib>Navrotsky, Alexandra</creatorcontrib><creatorcontrib>McCormack, Scott J</creatorcontrib><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>American Ceramic Society. American Ceramic Society Bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hong, Qi-Jun</au><au>Ushakov, Sergey V</au><au>Lilova, Kristina</au><au>Navrotsky, Alexandra</au><au>McCormack, Scott J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure and thermodynamics of oxides/carbides/nitrides/borides at high temperatures</atitle><jtitle>American Ceramic Society. American Ceramic Society Bulletin</jtitle><date>2023-03-01</date><risdate>2023</risdate><volume>102</volume><issue>2</issue><spage>28</spage><pages>28-</pages><issn>0002-7812</issn><eissn>1945-2705</eissn><abstract>Humankind has an innate appetite for exploration, energy, and speed. These areas all require materials that operate in extreme environments, for example, temperatures above 1,500 degrees C. While exploring the universe can be cold, reentry into a planet's atmosphere can be hot. Energy production through nuclear fission can reach temperatures of up to about 1,700 degrees C and even higher for nuclear fusion, while nuclear thermal propulsion systems require temperatures up to about 2,800 degrees C to provide thrust to propel next-generation spacecrafts to Mars and beyond. When traveling at hypersonic speeds on Earth, leading edges can reach temperatures of about 2,700 degrees C at Mach 8. High-temperature thermal barrier systems as well as high-temperature environmental barrier coatings are required to protect both people and equipment on board from these high temperatures. To effectively design high-temperature material systems, one must have a clear understanding of both their thermodynamic properties and atomic structure. Understanding thermodynamics is essential to determining the longevity (stability) of a system in its operating environment, while atomic structure influences the desired material properties (e.g., mechanical, thermal, electrical, optical).</abstract><cop>Columbus</cop><pub>American Ceramic Society</pub></addata></record>
fulltext fulltext
identifier ISSN: 0002-7812
ispartof American Ceramic Society. American Ceramic Society Bulletin, 2023-03, Vol.102 (2), p.28
issn 0002-7812
1945-2705
language eng
recordid cdi_proquest_reports_2778655741
source EBSCOhost Art & Architecture Source
subjects Atmospheric entry
Atomic structure
Borides
Extreme environments
High temperature
Leading edges
Material properties
Mechanical properties
Nuclear fission
Nuclear fusion
Nuclear thermal propulsion
Onboard equipment
Optical properties
Planetary atmospheres
Propulsion systems
System effectiveness
Thermodynamic properties
Thermodynamics
title Structure and thermodynamics of oxides/carbides/nitrides/borides at high temperatures
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A49%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20and%20thermodynamics%20of%20oxides/carbides/nitrides/borides%20at%20high%20temperatures&rft.jtitle=American%20Ceramic%20Society.%20American%20Ceramic%20Society%20Bulletin&rft.au=Hong,%20Qi-Jun&rft.date=2023-03-01&rft.volume=102&rft.issue=2&rft.spage=28&rft.pages=28-&rft.issn=0002-7812&rft.eissn=1945-2705&rft_id=info:doi/&rft_dat=%3Cproquest%3E2778655741%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p182t-ce3ebe11ccdc9e481838a998ea40291e778b5f64f3b451b24d46178fa8ddc313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2778655741&rft_id=info:pmid/&rfr_iscdi=true