Loading…
RNA Polymerase I Transcription Factor Rrn3 Is Functionally Conserved between Yeast and Human
We have cloned a human cDNA that is related to the RNA polymerase I transcription factor Rrn3 of Saccharomyces cerevisiae. The recombinant human protein displays both sequence similarity and immunological crossreactivity to yeast Rrn3 and is capable of rescuing a yeast strain carrying a disruption o...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2000-04, Vol.97 (9), p.4724-4729 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We have cloned a human cDNA that is related to the RNA polymerase I transcription factor Rrn3 of Saccharomyces cerevisiae. The recombinant human protein displays both sequence similarity and immunological crossreactivity to yeast Rrn3 and is capable of rescuing a yeast strain carrying a disruption of the RRN3 gene in vivo. Point mutation of an amino acid that is conserved between the yeast and human proteins compromises the function of each factor, confirming that the observed sequence similarity is functionally significant. Rrn3 is the first RNA polymerase I-specific transcription factor shown to be functionally conserved between yeast and mammals, suggesting that at least one mechanism that regulates ribosomal RNA synthesis is conserved among eukaryotes. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.080063997 |