Loading…

Maximal inhibition of SERCA2 Ca(2+) affinity by phospholamban in transgenic hearts overexpressing a non-phosphorylatable form of phospholamban

Phospholamban is a phosphoprotein in the cardiac sarcoplasmic reticulum (SR) which regulates the apparent Ca(2+) affinity of the SR Ca(2+)-ATPase (SERCA2). To determine the levels of phospholamban which are associated with maximal inhibition of SERCA2, several lines of transgenic mice were generated...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2000-04, Vol.275 (16), p.12129
Main Authors: Brittsan, A G, Carr, A N, Schmidt, A G, Kranias, E G
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Phospholamban is a phosphoprotein in the cardiac sarcoplasmic reticulum (SR) which regulates the apparent Ca(2+) affinity of the SR Ca(2+)-ATPase (SERCA2). To determine the levels of phospholamban which are associated with maximal inhibition of SERCA2, several lines of transgenic mice were generated which expressed increasing levels of a non-phosphorylatable form of phospholamban (S16A,T17A) specifically in the heart. This mutant form of phospholamban was chosen to prevent phosphorylation as a compensatory mechanism in vivo. Quantitative immunoblotting revealed increased phospholamban protein levels of 1.8-, 2.6-, 3.7-, and 4.7-fold in transgenic hearts compared with wild types. There were no changes in the expression levels of SERCA2, calsequestrin, calreticulin, and ryanodine receptor. Assessment of SR Ca(2+) uptake in hearts of transgenic mice indicated increases in the inhibition of the affinity of SERCA2 for Ca(2+) with increased phospholamban expression. Maximal inhibition was obtained at phospholamban expression levels of 2.6-fold or higher. Transgenic hearts with functional saturation in phospholamban:SERCA2 (>/=2.6:1) exhibited increases in beta-myosin heavy chain expression, associated with cardiac hypertrophy. These findings demonstrate that overexpression of a non-phosphorylatable form of phospholamban in transgenic mouse hearts resulted in saturation of the functional phospholamban:SERCA2 ratio at 2.6:1 and suggest that approximately 40% of the SR Ca(2+) pumps are functionally regulated by phospholamban in vivo.
ISSN:0021-9258
DOI:10.1074/jbc.275.16.12129