Loading…
Site-Directed Ligand Discovery
We report a strategy (called "tethering") to discover low molecular weight ligands (≈ 250 Da) that bind weakly to targeted sites on proteins through an intermediary disulfide tether. A native or engineered cysteine in a protein is allowed to react reversibly with a small library of disulfi...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2000-08, Vol.97 (17), p.9367-9372 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c586t-63caf9ca34c67a6377045a8ea16b152345bf0e21ffc55c3b2c04294440aa49f13 |
---|---|
cites | cdi_FETCH-LOGICAL-c586t-63caf9ca34c67a6377045a8ea16b152345bf0e21ffc55c3b2c04294440aa49f13 |
container_end_page | 9372 |
container_issue | 17 |
container_start_page | 9367 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 97 |
creator | Erlanson, Daniel A. Braisted, Andrew C. Raphael, Darren R. Randal, Mike Stroud, Robert M. Gordon, Eric M. Wells, James A. |
description | We report a strategy (called "tethering") to discover low molecular weight ligands (≈ 250 Da) that bind weakly to targeted sites on proteins through an intermediary disulfide tether. A native or engineered cysteine in a protein is allowed to react reversibly with a small library of disulfide-containing molecules (≈ 1,200 compounds) at concentrations typically used in drug screening (10 to 200 μ M). The cysteine-captured ligands, which are readily identified by MS, are among the most stable complexes, even though in the absence of the covalent tether the ligands may bind very weakly. This method was applied to generate a potent inhibitor for thymidylate synthase, an essential enzyme in pyrimidine metabolism with therapeutic applications in cancer and infectious diseases. The affinity of the untethered ligand (Ki≈ 1 mM) was improved 3,000-fold by synthesis of a small set of analogs with the aid of crystallographic structures of the tethered complex. Such site-directed ligand discovery allows one to nucleate drug design from a spatially targeted lead fragment. |
doi_str_mv | 10.1073/pnas.97.17.9367 |
format | article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmed_primary_10944209</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>123469</jstor_id><sourcerecordid>123469</sourcerecordid><originalsourceid>FETCH-LOGICAL-c586t-63caf9ca34c67a6377045a8ea16b152345bf0e21ffc55c3b2c04294440aa49f13</originalsourceid><addsrcrecordid>eNp9kL1PwzAQxS0EoqUwMyBVFQNMac-xY8cSC2r5kioxALPluE5JlSbFTir63-MoBVoGphvu9969ewidYxhi4GS0KpQbCj7EfCgI4weoi0HggFEBh6gLEPIgpiHtoBPnFgAgohiOUcdDlIYguqj_klUmmGTW6MrMBtNsrorZYJI5Xa6N3Zyio1TlzpxtZw-93d-9jh-D6fPD0_h2GugoZlXAiFap0IpQzbhihHOgkYqNwizBUUholKRgQpymOoo0SUINNPQRKChFRYpJD920vqs6WZqZNkVlVS5XNlsqu5GlyuT-psje5bxcS8xiDl5-tZXb8qM2rpJL_4HJc1WYsnYS-0CC0Qa8_AMuytoW_jUZAibejDAPjVpI29I5a9KfHBhkU7tsapeCe1_Z1O4V_d34O3zb8w7QKL_Xew7X_wIyrfO8Mp-VJy9acuGq0v6e8i0zQb4AjM-eLg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201368736</pqid></control><display><type>article</type><title>Site-Directed Ligand Discovery</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Erlanson, Daniel A. ; Braisted, Andrew C. ; Raphael, Darren R. ; Randal, Mike ; Stroud, Robert M. ; Gordon, Eric M. ; Wells, James A.</creator><creatorcontrib>Erlanson, Daniel A. ; Braisted, Andrew C. ; Raphael, Darren R. ; Randal, Mike ; Stroud, Robert M. ; Gordon, Eric M. ; Wells, James A.</creatorcontrib><description>We report a strategy (called "tethering") to discover low molecular weight ligands (≈ 250 Da) that bind weakly to targeted sites on proteins through an intermediary disulfide tether. A native or engineered cysteine in a protein is allowed to react reversibly with a small library of disulfide-containing molecules (≈ 1,200 compounds) at concentrations typically used in drug screening (10 to 200 μ M). The cysteine-captured ligands, which are readily identified by MS, are among the most stable complexes, even though in the absence of the covalent tether the ligands may bind very weakly. This method was applied to generate a potent inhibitor for thymidylate synthase, an essential enzyme in pyrimidine metabolism with therapeutic applications in cancer and infectious diseases. The affinity of the untethered ligand (Ki≈ 1 mM) was improved 3,000-fold by synthesis of a small set of analogs with the aid of crystallographic structures of the tethered complex. Such site-directed ligand discovery allows one to nucleate drug design from a spatially targeted lead fragment.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.97.17.9367</identifier><identifier>PMID: 10944209</identifier><language>eng</language><publisher>United States: National Academy of Sciences of the United States of America</publisher><subject>Amino Acid Substitution - genetics ; Binding Sites ; Biochemistry ; Chemical bonds ; Chemistry ; Crystal structure ; Crystallography, X-Ray ; Cysteine - genetics ; Cysteine - metabolism ; Disulfides ; Disulfides - metabolism ; Drug Design ; Enzymes ; Escherichia coli - enzymology ; Esters ; Glutamic Acid - metabolism ; Lead ; Libraries ; Ligands ; Models, Molecular ; Molecular Weight ; Molecules ; Peptide Library ; Pharmacology ; Physical Sciences ; Proline - analogs & derivatives ; Proline - metabolism ; Protein Conformation ; Protein Engineering ; Proteins ; Thermodynamics ; Thymidylate Synthase - antagonists & inhibitors ; Thymidylate Synthase - chemistry ; Thymidylate Synthase - genetics ; Thymidylate Synthase - metabolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2000-08, Vol.97 (17), p.9367-9372</ispartof><rights>Copyright 1993-2000 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Aug 15, 2000</rights><rights>Copyright © 2000, The National Academy of Sciences 2000</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c586t-63caf9ca34c67a6377045a8ea16b152345bf0e21ffc55c3b2c04294440aa49f13</citedby><cites>FETCH-LOGICAL-c586t-63caf9ca34c67a6377045a8ea16b152345bf0e21ffc55c3b2c04294440aa49f13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/97/17.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/123469$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/123469$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10944209$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Erlanson, Daniel A.</creatorcontrib><creatorcontrib>Braisted, Andrew C.</creatorcontrib><creatorcontrib>Raphael, Darren R.</creatorcontrib><creatorcontrib>Randal, Mike</creatorcontrib><creatorcontrib>Stroud, Robert M.</creatorcontrib><creatorcontrib>Gordon, Eric M.</creatorcontrib><creatorcontrib>Wells, James A.</creatorcontrib><title>Site-Directed Ligand Discovery</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>We report a strategy (called "tethering") to discover low molecular weight ligands (≈ 250 Da) that bind weakly to targeted sites on proteins through an intermediary disulfide tether. A native or engineered cysteine in a protein is allowed to react reversibly with a small library of disulfide-containing molecules (≈ 1,200 compounds) at concentrations typically used in drug screening (10 to 200 μ M). The cysteine-captured ligands, which are readily identified by MS, are among the most stable complexes, even though in the absence of the covalent tether the ligands may bind very weakly. This method was applied to generate a potent inhibitor for thymidylate synthase, an essential enzyme in pyrimidine metabolism with therapeutic applications in cancer and infectious diseases. The affinity of the untethered ligand (Ki≈ 1 mM) was improved 3,000-fold by synthesis of a small set of analogs with the aid of crystallographic structures of the tethered complex. Such site-directed ligand discovery allows one to nucleate drug design from a spatially targeted lead fragment.</description><subject>Amino Acid Substitution - genetics</subject><subject>Binding Sites</subject><subject>Biochemistry</subject><subject>Chemical bonds</subject><subject>Chemistry</subject><subject>Crystal structure</subject><subject>Crystallography, X-Ray</subject><subject>Cysteine - genetics</subject><subject>Cysteine - metabolism</subject><subject>Disulfides</subject><subject>Disulfides - metabolism</subject><subject>Drug Design</subject><subject>Enzymes</subject><subject>Escherichia coli - enzymology</subject><subject>Esters</subject><subject>Glutamic Acid - metabolism</subject><subject>Lead</subject><subject>Libraries</subject><subject>Ligands</subject><subject>Models, Molecular</subject><subject>Molecular Weight</subject><subject>Molecules</subject><subject>Peptide Library</subject><subject>Pharmacology</subject><subject>Physical Sciences</subject><subject>Proline - analogs & derivatives</subject><subject>Proline - metabolism</subject><subject>Protein Conformation</subject><subject>Protein Engineering</subject><subject>Proteins</subject><subject>Thermodynamics</subject><subject>Thymidylate Synthase - antagonists & inhibitors</subject><subject>Thymidylate Synthase - chemistry</subject><subject>Thymidylate Synthase - genetics</subject><subject>Thymidylate Synthase - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNp9kL1PwzAQxS0EoqUwMyBVFQNMac-xY8cSC2r5kioxALPluE5JlSbFTir63-MoBVoGphvu9969ewidYxhi4GS0KpQbCj7EfCgI4weoi0HggFEBh6gLEPIgpiHtoBPnFgAgohiOUcdDlIYguqj_klUmmGTW6MrMBtNsrorZYJI5Xa6N3Zyio1TlzpxtZw-93d-9jh-D6fPD0_h2GugoZlXAiFap0IpQzbhihHOgkYqNwizBUUholKRgQpymOoo0SUINNPQRKChFRYpJD920vqs6WZqZNkVlVS5XNlsqu5GlyuT-psje5bxcS8xiDl5-tZXb8qM2rpJL_4HJc1WYsnYS-0CC0Qa8_AMuytoW_jUZAibejDAPjVpI29I5a9KfHBhkU7tsapeCe1_Z1O4V_d34O3zb8w7QKL_Xew7X_wIyrfO8Mp-VJy9acuGq0v6e8i0zQb4AjM-eLg</recordid><startdate>20000815</startdate><enddate>20000815</enddate><creator>Erlanson, Daniel A.</creator><creator>Braisted, Andrew C.</creator><creator>Raphael, Darren R.</creator><creator>Randal, Mike</creator><creator>Stroud, Robert M.</creator><creator>Gordon, Eric M.</creator><creator>Wells, James A.</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><general>National Academy of Sciences</general><general>The National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7QO</scope><scope>5PM</scope></search><sort><creationdate>20000815</creationdate><title>Site-Directed Ligand Discovery</title><author>Erlanson, Daniel A. ; Braisted, Andrew C. ; Raphael, Darren R. ; Randal, Mike ; Stroud, Robert M. ; Gordon, Eric M. ; Wells, James A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c586t-63caf9ca34c67a6377045a8ea16b152345bf0e21ffc55c3b2c04294440aa49f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Amino Acid Substitution - genetics</topic><topic>Binding Sites</topic><topic>Biochemistry</topic><topic>Chemical bonds</topic><topic>Chemistry</topic><topic>Crystal structure</topic><topic>Crystallography, X-Ray</topic><topic>Cysteine - genetics</topic><topic>Cysteine - metabolism</topic><topic>Disulfides</topic><topic>Disulfides - metabolism</topic><topic>Drug Design</topic><topic>Enzymes</topic><topic>Escherichia coli - enzymology</topic><topic>Esters</topic><topic>Glutamic Acid - metabolism</topic><topic>Lead</topic><topic>Libraries</topic><topic>Ligands</topic><topic>Models, Molecular</topic><topic>Molecular Weight</topic><topic>Molecules</topic><topic>Peptide Library</topic><topic>Pharmacology</topic><topic>Physical Sciences</topic><topic>Proline - analogs & derivatives</topic><topic>Proline - metabolism</topic><topic>Protein Conformation</topic><topic>Protein Engineering</topic><topic>Proteins</topic><topic>Thermodynamics</topic><topic>Thymidylate Synthase - antagonists & inhibitors</topic><topic>Thymidylate Synthase - chemistry</topic><topic>Thymidylate Synthase - genetics</topic><topic>Thymidylate Synthase - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Erlanson, Daniel A.</creatorcontrib><creatorcontrib>Braisted, Andrew C.</creatorcontrib><creatorcontrib>Raphael, Darren R.</creatorcontrib><creatorcontrib>Randal, Mike</creatorcontrib><creatorcontrib>Stroud, Robert M.</creatorcontrib><creatorcontrib>Gordon, Eric M.</creatorcontrib><creatorcontrib>Wells, James A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Erlanson, Daniel A.</au><au>Braisted, Andrew C.</au><au>Raphael, Darren R.</au><au>Randal, Mike</au><au>Stroud, Robert M.</au><au>Gordon, Eric M.</au><au>Wells, James A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Site-Directed Ligand Discovery</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2000-08-15</date><risdate>2000</risdate><volume>97</volume><issue>17</issue><spage>9367</spage><epage>9372</epage><pages>9367-9372</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>We report a strategy (called "tethering") to discover low molecular weight ligands (≈ 250 Da) that bind weakly to targeted sites on proteins through an intermediary disulfide tether. A native or engineered cysteine in a protein is allowed to react reversibly with a small library of disulfide-containing molecules (≈ 1,200 compounds) at concentrations typically used in drug screening (10 to 200 μ M). The cysteine-captured ligands, which are readily identified by MS, are among the most stable complexes, even though in the absence of the covalent tether the ligands may bind very weakly. This method was applied to generate a potent inhibitor for thymidylate synthase, an essential enzyme in pyrimidine metabolism with therapeutic applications in cancer and infectious diseases. The affinity of the untethered ligand (Ki≈ 1 mM) was improved 3,000-fold by synthesis of a small set of analogs with the aid of crystallographic structures of the tethered complex. Such site-directed ligand discovery allows one to nucleate drug design from a spatially targeted lead fragment.</abstract><cop>United States</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>10944209</pmid><doi>10.1073/pnas.97.17.9367</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2000-08, Vol.97 (17), p.9367-9372 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmed_primary_10944209 |
source | JSTOR Archival Journals and Primary Sources Collection; PubMed Central |
subjects | Amino Acid Substitution - genetics Binding Sites Biochemistry Chemical bonds Chemistry Crystal structure Crystallography, X-Ray Cysteine - genetics Cysteine - metabolism Disulfides Disulfides - metabolism Drug Design Enzymes Escherichia coli - enzymology Esters Glutamic Acid - metabolism Lead Libraries Ligands Models, Molecular Molecular Weight Molecules Peptide Library Pharmacology Physical Sciences Proline - analogs & derivatives Proline - metabolism Protein Conformation Protein Engineering Proteins Thermodynamics Thymidylate Synthase - antagonists & inhibitors Thymidylate Synthase - chemistry Thymidylate Synthase - genetics Thymidylate Synthase - metabolism |
title | Site-Directed Ligand Discovery |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T08%3A21%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Site-Directed%20Ligand%20Discovery&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Erlanson,%20Daniel%20A.&rft.date=2000-08-15&rft.volume=97&rft.issue=17&rft.spage=9367&rft.epage=9372&rft.pages=9367-9372&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.97.17.9367&rft_dat=%3Cjstor_pubme%3E123469%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c586t-63caf9ca34c67a6377045a8ea16b152345bf0e21ffc55c3b2c04294440aa49f13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=201368736&rft_id=info:pmid/10944209&rft_jstor_id=123469&rfr_iscdi=true |