Loading…

Site-Directed Ligand Discovery

We report a strategy (called "tethering") to discover low molecular weight ligands (≈ 250 Da) that bind weakly to targeted sites on proteins through an intermediary disulfide tether. A native or engineered cysteine in a protein is allowed to react reversibly with a small library of disulfi...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2000-08, Vol.97 (17), p.9367-9372
Main Authors: Erlanson, Daniel A., Braisted, Andrew C., Raphael, Darren R., Randal, Mike, Stroud, Robert M., Gordon, Eric M., Wells, James A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c586t-63caf9ca34c67a6377045a8ea16b152345bf0e21ffc55c3b2c04294440aa49f13
cites cdi_FETCH-LOGICAL-c586t-63caf9ca34c67a6377045a8ea16b152345bf0e21ffc55c3b2c04294440aa49f13
container_end_page 9372
container_issue 17
container_start_page 9367
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 97
creator Erlanson, Daniel A.
Braisted, Andrew C.
Raphael, Darren R.
Randal, Mike
Stroud, Robert M.
Gordon, Eric M.
Wells, James A.
description We report a strategy (called "tethering") to discover low molecular weight ligands (≈ 250 Da) that bind weakly to targeted sites on proteins through an intermediary disulfide tether. A native or engineered cysteine in a protein is allowed to react reversibly with a small library of disulfide-containing molecules (≈ 1,200 compounds) at concentrations typically used in drug screening (10 to 200 μ M). The cysteine-captured ligands, which are readily identified by MS, are among the most stable complexes, even though in the absence of the covalent tether the ligands may bind very weakly. This method was applied to generate a potent inhibitor for thymidylate synthase, an essential enzyme in pyrimidine metabolism with therapeutic applications in cancer and infectious diseases. The affinity of the untethered ligand (Ki≈ 1 mM) was improved 3,000-fold by synthesis of a small set of analogs with the aid of crystallographic structures of the tethered complex. Such site-directed ligand discovery allows one to nucleate drug design from a spatially targeted lead fragment.
doi_str_mv 10.1073/pnas.97.17.9367
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmed_primary_10944209</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>123469</jstor_id><sourcerecordid>123469</sourcerecordid><originalsourceid>FETCH-LOGICAL-c586t-63caf9ca34c67a6377045a8ea16b152345bf0e21ffc55c3b2c04294440aa49f13</originalsourceid><addsrcrecordid>eNp9kL1PwzAQxS0EoqUwMyBVFQNMac-xY8cSC2r5kioxALPluE5JlSbFTir63-MoBVoGphvu9969ewidYxhi4GS0KpQbCj7EfCgI4weoi0HggFEBh6gLEPIgpiHtoBPnFgAgohiOUcdDlIYguqj_klUmmGTW6MrMBtNsrorZYJI5Xa6N3Zyio1TlzpxtZw-93d-9jh-D6fPD0_h2GugoZlXAiFap0IpQzbhihHOgkYqNwizBUUholKRgQpymOoo0SUINNPQRKChFRYpJD920vqs6WZqZNkVlVS5XNlsqu5GlyuT-psje5bxcS8xiDl5-tZXb8qM2rpJL_4HJc1WYsnYS-0CC0Qa8_AMuytoW_jUZAibejDAPjVpI29I5a9KfHBhkU7tsapeCe1_Z1O4V_d34O3zb8w7QKL_Xew7X_wIyrfO8Mp-VJy9acuGq0v6e8i0zQb4AjM-eLg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201368736</pqid></control><display><type>article</type><title>Site-Directed Ligand Discovery</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Erlanson, Daniel A. ; Braisted, Andrew C. ; Raphael, Darren R. ; Randal, Mike ; Stroud, Robert M. ; Gordon, Eric M. ; Wells, James A.</creator><creatorcontrib>Erlanson, Daniel A. ; Braisted, Andrew C. ; Raphael, Darren R. ; Randal, Mike ; Stroud, Robert M. ; Gordon, Eric M. ; Wells, James A.</creatorcontrib><description>We report a strategy (called "tethering") to discover low molecular weight ligands (≈ 250 Da) that bind weakly to targeted sites on proteins through an intermediary disulfide tether. A native or engineered cysteine in a protein is allowed to react reversibly with a small library of disulfide-containing molecules (≈ 1,200 compounds) at concentrations typically used in drug screening (10 to 200 μ M). The cysteine-captured ligands, which are readily identified by MS, are among the most stable complexes, even though in the absence of the covalent tether the ligands may bind very weakly. This method was applied to generate a potent inhibitor for thymidylate synthase, an essential enzyme in pyrimidine metabolism with therapeutic applications in cancer and infectious diseases. The affinity of the untethered ligand (Ki≈ 1 mM) was improved 3,000-fold by synthesis of a small set of analogs with the aid of crystallographic structures of the tethered complex. Such site-directed ligand discovery allows one to nucleate drug design from a spatially targeted lead fragment.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.97.17.9367</identifier><identifier>PMID: 10944209</identifier><language>eng</language><publisher>United States: National Academy of Sciences of the United States of America</publisher><subject>Amino Acid Substitution - genetics ; Binding Sites ; Biochemistry ; Chemical bonds ; Chemistry ; Crystal structure ; Crystallography, X-Ray ; Cysteine - genetics ; Cysteine - metabolism ; Disulfides ; Disulfides - metabolism ; Drug Design ; Enzymes ; Escherichia coli - enzymology ; Esters ; Glutamic Acid - metabolism ; Lead ; Libraries ; Ligands ; Models, Molecular ; Molecular Weight ; Molecules ; Peptide Library ; Pharmacology ; Physical Sciences ; Proline - analogs &amp; derivatives ; Proline - metabolism ; Protein Conformation ; Protein Engineering ; Proteins ; Thermodynamics ; Thymidylate Synthase - antagonists &amp; inhibitors ; Thymidylate Synthase - chemistry ; Thymidylate Synthase - genetics ; Thymidylate Synthase - metabolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2000-08, Vol.97 (17), p.9367-9372</ispartof><rights>Copyright 1993-2000 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Aug 15, 2000</rights><rights>Copyright © 2000, The National Academy of Sciences 2000</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c586t-63caf9ca34c67a6377045a8ea16b152345bf0e21ffc55c3b2c04294440aa49f13</citedby><cites>FETCH-LOGICAL-c586t-63caf9ca34c67a6377045a8ea16b152345bf0e21ffc55c3b2c04294440aa49f13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/97/17.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/123469$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/123469$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10944209$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Erlanson, Daniel A.</creatorcontrib><creatorcontrib>Braisted, Andrew C.</creatorcontrib><creatorcontrib>Raphael, Darren R.</creatorcontrib><creatorcontrib>Randal, Mike</creatorcontrib><creatorcontrib>Stroud, Robert M.</creatorcontrib><creatorcontrib>Gordon, Eric M.</creatorcontrib><creatorcontrib>Wells, James A.</creatorcontrib><title>Site-Directed Ligand Discovery</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>We report a strategy (called "tethering") to discover low molecular weight ligands (≈ 250 Da) that bind weakly to targeted sites on proteins through an intermediary disulfide tether. A native or engineered cysteine in a protein is allowed to react reversibly with a small library of disulfide-containing molecules (≈ 1,200 compounds) at concentrations typically used in drug screening (10 to 200 μ M). The cysteine-captured ligands, which are readily identified by MS, are among the most stable complexes, even though in the absence of the covalent tether the ligands may bind very weakly. This method was applied to generate a potent inhibitor for thymidylate synthase, an essential enzyme in pyrimidine metabolism with therapeutic applications in cancer and infectious diseases. The affinity of the untethered ligand (Ki≈ 1 mM) was improved 3,000-fold by synthesis of a small set of analogs with the aid of crystallographic structures of the tethered complex. Such site-directed ligand discovery allows one to nucleate drug design from a spatially targeted lead fragment.</description><subject>Amino Acid Substitution - genetics</subject><subject>Binding Sites</subject><subject>Biochemistry</subject><subject>Chemical bonds</subject><subject>Chemistry</subject><subject>Crystal structure</subject><subject>Crystallography, X-Ray</subject><subject>Cysteine - genetics</subject><subject>Cysteine - metabolism</subject><subject>Disulfides</subject><subject>Disulfides - metabolism</subject><subject>Drug Design</subject><subject>Enzymes</subject><subject>Escherichia coli - enzymology</subject><subject>Esters</subject><subject>Glutamic Acid - metabolism</subject><subject>Lead</subject><subject>Libraries</subject><subject>Ligands</subject><subject>Models, Molecular</subject><subject>Molecular Weight</subject><subject>Molecules</subject><subject>Peptide Library</subject><subject>Pharmacology</subject><subject>Physical Sciences</subject><subject>Proline - analogs &amp; derivatives</subject><subject>Proline - metabolism</subject><subject>Protein Conformation</subject><subject>Protein Engineering</subject><subject>Proteins</subject><subject>Thermodynamics</subject><subject>Thymidylate Synthase - antagonists &amp; inhibitors</subject><subject>Thymidylate Synthase - chemistry</subject><subject>Thymidylate Synthase - genetics</subject><subject>Thymidylate Synthase - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNp9kL1PwzAQxS0EoqUwMyBVFQNMac-xY8cSC2r5kioxALPluE5JlSbFTir63-MoBVoGphvu9969ewidYxhi4GS0KpQbCj7EfCgI4weoi0HggFEBh6gLEPIgpiHtoBPnFgAgohiOUcdDlIYguqj_klUmmGTW6MrMBtNsrorZYJI5Xa6N3Zyio1TlzpxtZw-93d-9jh-D6fPD0_h2GugoZlXAiFap0IpQzbhihHOgkYqNwizBUUholKRgQpymOoo0SUINNPQRKChFRYpJD920vqs6WZqZNkVlVS5XNlsqu5GlyuT-psje5bxcS8xiDl5-tZXb8qM2rpJL_4HJc1WYsnYS-0CC0Qa8_AMuytoW_jUZAibejDAPjVpI29I5a9KfHBhkU7tsapeCe1_Z1O4V_d34O3zb8w7QKL_Xew7X_wIyrfO8Mp-VJy9acuGq0v6e8i0zQb4AjM-eLg</recordid><startdate>20000815</startdate><enddate>20000815</enddate><creator>Erlanson, Daniel A.</creator><creator>Braisted, Andrew C.</creator><creator>Raphael, Darren R.</creator><creator>Randal, Mike</creator><creator>Stroud, Robert M.</creator><creator>Gordon, Eric M.</creator><creator>Wells, James A.</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><general>National Academy of Sciences</general><general>The National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7QO</scope><scope>5PM</scope></search><sort><creationdate>20000815</creationdate><title>Site-Directed Ligand Discovery</title><author>Erlanson, Daniel A. ; Braisted, Andrew C. ; Raphael, Darren R. ; Randal, Mike ; Stroud, Robert M. ; Gordon, Eric M. ; Wells, James A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c586t-63caf9ca34c67a6377045a8ea16b152345bf0e21ffc55c3b2c04294440aa49f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Amino Acid Substitution - genetics</topic><topic>Binding Sites</topic><topic>Biochemistry</topic><topic>Chemical bonds</topic><topic>Chemistry</topic><topic>Crystal structure</topic><topic>Crystallography, X-Ray</topic><topic>Cysteine - genetics</topic><topic>Cysteine - metabolism</topic><topic>Disulfides</topic><topic>Disulfides - metabolism</topic><topic>Drug Design</topic><topic>Enzymes</topic><topic>Escherichia coli - enzymology</topic><topic>Esters</topic><topic>Glutamic Acid - metabolism</topic><topic>Lead</topic><topic>Libraries</topic><topic>Ligands</topic><topic>Models, Molecular</topic><topic>Molecular Weight</topic><topic>Molecules</topic><topic>Peptide Library</topic><topic>Pharmacology</topic><topic>Physical Sciences</topic><topic>Proline - analogs &amp; derivatives</topic><topic>Proline - metabolism</topic><topic>Protein Conformation</topic><topic>Protein Engineering</topic><topic>Proteins</topic><topic>Thermodynamics</topic><topic>Thymidylate Synthase - antagonists &amp; inhibitors</topic><topic>Thymidylate Synthase - chemistry</topic><topic>Thymidylate Synthase - genetics</topic><topic>Thymidylate Synthase - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Erlanson, Daniel A.</creatorcontrib><creatorcontrib>Braisted, Andrew C.</creatorcontrib><creatorcontrib>Raphael, Darren R.</creatorcontrib><creatorcontrib>Randal, Mike</creatorcontrib><creatorcontrib>Stroud, Robert M.</creatorcontrib><creatorcontrib>Gordon, Eric M.</creatorcontrib><creatorcontrib>Wells, James A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Erlanson, Daniel A.</au><au>Braisted, Andrew C.</au><au>Raphael, Darren R.</au><au>Randal, Mike</au><au>Stroud, Robert M.</au><au>Gordon, Eric M.</au><au>Wells, James A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Site-Directed Ligand Discovery</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2000-08-15</date><risdate>2000</risdate><volume>97</volume><issue>17</issue><spage>9367</spage><epage>9372</epage><pages>9367-9372</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>We report a strategy (called "tethering") to discover low molecular weight ligands (≈ 250 Da) that bind weakly to targeted sites on proteins through an intermediary disulfide tether. A native or engineered cysteine in a protein is allowed to react reversibly with a small library of disulfide-containing molecules (≈ 1,200 compounds) at concentrations typically used in drug screening (10 to 200 μ M). The cysteine-captured ligands, which are readily identified by MS, are among the most stable complexes, even though in the absence of the covalent tether the ligands may bind very weakly. This method was applied to generate a potent inhibitor for thymidylate synthase, an essential enzyme in pyrimidine metabolism with therapeutic applications in cancer and infectious diseases. The affinity of the untethered ligand (Ki≈ 1 mM) was improved 3,000-fold by synthesis of a small set of analogs with the aid of crystallographic structures of the tethered complex. Such site-directed ligand discovery allows one to nucleate drug design from a spatially targeted lead fragment.</abstract><cop>United States</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>10944209</pmid><doi>10.1073/pnas.97.17.9367</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2000-08, Vol.97 (17), p.9367-9372
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmed_primary_10944209
source JSTOR Archival Journals and Primary Sources Collection; PubMed Central
subjects Amino Acid Substitution - genetics
Binding Sites
Biochemistry
Chemical bonds
Chemistry
Crystal structure
Crystallography, X-Ray
Cysteine - genetics
Cysteine - metabolism
Disulfides
Disulfides - metabolism
Drug Design
Enzymes
Escherichia coli - enzymology
Esters
Glutamic Acid - metabolism
Lead
Libraries
Ligands
Models, Molecular
Molecular Weight
Molecules
Peptide Library
Pharmacology
Physical Sciences
Proline - analogs & derivatives
Proline - metabolism
Protein Conformation
Protein Engineering
Proteins
Thermodynamics
Thymidylate Synthase - antagonists & inhibitors
Thymidylate Synthase - chemistry
Thymidylate Synthase - genetics
Thymidylate Synthase - metabolism
title Site-Directed Ligand Discovery
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T08%3A21%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Site-Directed%20Ligand%20Discovery&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Erlanson,%20Daniel%20A.&rft.date=2000-08-15&rft.volume=97&rft.issue=17&rft.spage=9367&rft.epage=9372&rft.pages=9367-9372&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.97.17.9367&rft_dat=%3Cjstor_pubme%3E123469%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c586t-63caf9ca34c67a6377045a8ea16b152345bf0e21ffc55c3b2c04294440aa49f13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=201368736&rft_id=info:pmid/10944209&rft_jstor_id=123469&rfr_iscdi=true