Loading…

Mobile Elements and Chromosomal Evolution in the Virilis Group of Drosophila

Species of the virilis group of Drosophila differ by multiple inversions and chromosome fusions that probably accompanied, or led to, speciation. Drosophila virilis has the primitive karyotype for the group, and natural populations are exceptional in having no chromosomal polymorphisms. We report th...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2000-10, Vol.97 (21), p.11337-11342
Main Authors: Michael B. Evgen'ev, Zelentsova, Helena, Poluectova, Helena, Lyozin, George T., Veleikodvorskaja, Vera, Pyatkov, K. I., Zhivotovsky, Lev A., Kidwell, Margaret G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Species of the virilis group of Drosophila differ by multiple inversions and chromosome fusions that probably accompanied, or led to, speciation. Drosophila virilis has the primitive karyotype for the group, and natural populations are exceptional in having no chromosomal polymorphisms. We report that the genomic locations of Penelope and Ulysses transposons are nonrandomly distributed in 12 strains of D. virilis. Furthermore, Penelope and Ulysses insertion sites in D. virilis show a statistically significant association with the breakpoints of inversions found in other species of the virilis group. Sixteen newly induced chromosomal rearrangements were isolated from the progeny of D. virilis hybrid dysgenic crosses, including 12 inversions, 2 translocations, and 2 deletions. Penelope and Ulysses were associated with the breakpoints of over half of these new rearrangements. Many rearrangement breakpoints also coincide with the chromosomal locations of Penelope and Ulysses insertions in the parental strains and with breakpoints of inversions previously established for other species of the group. Analysis of homologous sequences from D. virilis and Drosophila lummei indicated that Penelope insertion sites were closely, but not identically, located at the nucleotide sequence level. Overall, these results indicate that Penelope and Ulysses insert in a limited number of genomic locations and are consistent with the possibility that these elements play an important role in the evolution of the virilis species group.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.210386297