Loading…
MECHANISMS OF SYNAPTIC VESICLE EXOCYTOSIS
Chemical synaptic transmission serves as the main form of cell to cell communication in the nervous system. Neurotransmitter release occurs through the process of regulated exocytosis, in which a synaptic vesicle releases its contents in response to an increase in calcium. The use of genetic, bioche...
Saved in:
Published in: | Annual review of cell and developmental biology 2000-01, Vol.16 (1), p.19-49 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a486t-3a6a6909cb7fa0c150cebc52e52ff24b2089ae2a2b76244fb016acb970bcf5703 |
---|---|
cites | cdi_FETCH-LOGICAL-a486t-3a6a6909cb7fa0c150cebc52e52ff24b2089ae2a2b76244fb016acb970bcf5703 |
container_end_page | 49 |
container_issue | 1 |
container_start_page | 19 |
container_title | Annual review of cell and developmental biology |
container_volume | 16 |
creator | Lin, Richard C Scheller, Richard H |
description | Chemical synaptic transmission serves as the main form of cell to cell
communication in the nervous system. Neurotransmitter release occurs through
the process of regulated exocytosis, in which a synaptic vesicle releases its
contents in response to an increase in calcium. The use of genetic,
biochemical, structural, and functional studies has led to the identification
of factors important in the synaptic vesicle life cycle. Here we focus on the
prominent role of SNARE (soluble NSF attachment protein receptor) proteins
during membrane fusion and the regulation of SNARE function by Rab3a, nSec1,
and NSF. Many of the proteins important for transmitter release have homologs
involved in intracellular vesicle transport, and all forms of vesicle
trafficking share common basic principles. Finally, modifications to the
synaptic exocytosis pathway are very likely to underlie certain forms of
synaptic plasticity and therefore contribute to learning and memory. |
doi_str_mv | 10.1146/annurev.cellbio.16.1.19 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_11031229</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72339319</sourcerecordid><originalsourceid>FETCH-LOGICAL-a486t-3a6a6909cb7fa0c150cebc52e52ff24b2089ae2a2b76244fb016acb970bcf5703</originalsourceid><addsrcrecordid>eNqNkMFKw0AQhhdRrFZfQYsHwUPizG6ymwUvJaQ2UFshVexp2Y0baGmbmm0U397UBgQvyhxmDt98zPyEXCL4iAG_1et1Xdl3P7fLpZmXPnIffZQH5ARDBl4kZXjYzBChBwJ4h5w6twAAyVh4TDqIwJBSeUJuHpJ42B-n2UPWmwx62Wzcf5ymce85ydJ4lPSSl0k8m06yNDsjR4VeOnve9i55GiTTeOiNJvdp3B95Ooj41mOaay5B5kYUGnIMIbcmD6kNaVHQwFCIpLZUUyM4DYLCAHKdGynA5EUogHXJ9d67qcq32rqtWs3d7k-9tmXtlKCMSYbyTxCFoE1hA179AhdlXa2bJxRFIXkgItFAYg_lVelcZQu1qeYrXX0qBLXLXLWZqzZzhVyh-r7jotXXZmVff_bakBvgbg_sDHrZOOb2w_3b_wW5i5I_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217964787</pqid></control><display><type>article</type><title>MECHANISMS OF SYNAPTIC VESICLE EXOCYTOSIS</title><source>Annual Reviews Sciences archive collection</source><creator>Lin, Richard C ; Scheller, Richard H</creator><creatorcontrib>Lin, Richard C ; Scheller, Richard H</creatorcontrib><description>Chemical synaptic transmission serves as the main form of cell to cell
communication in the nervous system. Neurotransmitter release occurs through
the process of regulated exocytosis, in which a synaptic vesicle releases its
contents in response to an increase in calcium. The use of genetic,
biochemical, structural, and functional studies has led to the identification
of factors important in the synaptic vesicle life cycle. Here we focus on the
prominent role of SNARE (soluble NSF attachment protein receptor) proteins
during membrane fusion and the regulation of SNARE function by Rab3a, nSec1,
and NSF. Many of the proteins important for transmitter release have homologs
involved in intracellular vesicle transport, and all forms of vesicle
trafficking share common basic principles. Finally, modifications to the
synaptic exocytosis pathway are very likely to underlie certain forms of
synaptic plasticity and therefore contribute to learning and memory.</description><identifier>ISSN: 1081-0706</identifier><identifier>EISSN: 1530-8995</identifier><identifier>DOI: 10.1146/annurev.cellbio.16.1.19</identifier><identifier>PMID: 11031229</identifier><identifier>CODEN: ARDBF8</identifier><language>eng</language><publisher>Palo Alto, CA 94303-0139: Annual Reviews</publisher><subject>Animals ; Calcium - metabolism ; Calcium-Binding Proteins ; Carrier Proteins - metabolism ; Exocytosis - physiology ; Humans ; membrane fusion ; Membrane Fusion - physiology ; Membrane Glycoproteins - metabolism ; Membrane Proteins - metabolism ; Munc18 Proteins ; Nerve Tissue Proteins - metabolism ; Phosphorylation ; rab3A GTP-Binding Protein - metabolism ; Signal Transduction - physiology ; SNARE ; SNARE complex ; SNARE Proteins ; Synaptic Vesicles - metabolism ; Synaptic Vesicles - physiology ; Synaptotagmins ; syntaxin ; VAMP ; vesicle trafficking ; Vesicular Transport Proteins</subject><ispartof>Annual review of cell and developmental biology, 2000-01, Vol.16 (1), p.19-49</ispartof><rights>Copyright © 2000 by Annual Reviews. All rights reserved</rights><rights>Copyright Annual Reviews, Inc. 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a486t-3a6a6909cb7fa0c150cebc52e52ff24b2089ae2a2b76244fb016acb970bcf5703</citedby><cites>FETCH-LOGICAL-a486t-3a6a6909cb7fa0c150cebc52e52ff24b2089ae2a2b76244fb016acb970bcf5703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.annualreviews.org/content/journals/10.1146/annurev.cellbio.16.1.19?crawler=true&mimetype=application/pdf$$EPDF$$P50$$Gannualreviews$$H</linktopdf><linktohtml>$$Uhttps://www.annualreviews.org/content/journals/10.1146/annurev.cellbio.16.1.19$$EHTML$$P50$$Gannualreviews$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,78274,78379</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11031229$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Richard C</creatorcontrib><creatorcontrib>Scheller, Richard H</creatorcontrib><title>MECHANISMS OF SYNAPTIC VESICLE EXOCYTOSIS</title><title>Annual review of cell and developmental biology</title><addtitle>Annu Rev Cell Dev Biol</addtitle><description>Chemical synaptic transmission serves as the main form of cell to cell
communication in the nervous system. Neurotransmitter release occurs through
the process of regulated exocytosis, in which a synaptic vesicle releases its
contents in response to an increase in calcium. The use of genetic,
biochemical, structural, and functional studies has led to the identification
of factors important in the synaptic vesicle life cycle. Here we focus on the
prominent role of SNARE (soluble NSF attachment protein receptor) proteins
during membrane fusion and the regulation of SNARE function by Rab3a, nSec1,
and NSF. Many of the proteins important for transmitter release have homologs
involved in intracellular vesicle transport, and all forms of vesicle
trafficking share common basic principles. Finally, modifications to the
synaptic exocytosis pathway are very likely to underlie certain forms of
synaptic plasticity and therefore contribute to learning and memory.</description><subject>Animals</subject><subject>Calcium - metabolism</subject><subject>Calcium-Binding Proteins</subject><subject>Carrier Proteins - metabolism</subject><subject>Exocytosis - physiology</subject><subject>Humans</subject><subject>membrane fusion</subject><subject>Membrane Fusion - physiology</subject><subject>Membrane Glycoproteins - metabolism</subject><subject>Membrane Proteins - metabolism</subject><subject>Munc18 Proteins</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Phosphorylation</subject><subject>rab3A GTP-Binding Protein - metabolism</subject><subject>Signal Transduction - physiology</subject><subject>SNARE</subject><subject>SNARE complex</subject><subject>SNARE Proteins</subject><subject>Synaptic Vesicles - metabolism</subject><subject>Synaptic Vesicles - physiology</subject><subject>Synaptotagmins</subject><subject>syntaxin</subject><subject>VAMP</subject><subject>vesicle trafficking</subject><subject>Vesicular Transport Proteins</subject><issn>1081-0706</issn><issn>1530-8995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqNkMFKw0AQhhdRrFZfQYsHwUPizG6ymwUvJaQ2UFshVexp2Y0baGmbmm0U397UBgQvyhxmDt98zPyEXCL4iAG_1et1Xdl3P7fLpZmXPnIffZQH5ARDBl4kZXjYzBChBwJ4h5w6twAAyVh4TDqIwJBSeUJuHpJ42B-n2UPWmwx62Wzcf5ymce85ydJ4lPSSl0k8m06yNDsjR4VeOnve9i55GiTTeOiNJvdp3B95Ooj41mOaay5B5kYUGnIMIbcmD6kNaVHQwFCIpLZUUyM4DYLCAHKdGynA5EUogHXJ9d67qcq32rqtWs3d7k-9tmXtlKCMSYbyTxCFoE1hA179AhdlXa2bJxRFIXkgItFAYg_lVelcZQu1qeYrXX0qBLXLXLWZqzZzhVyh-r7jotXXZmVff_bakBvgbg_sDHrZOOb2w_3b_wW5i5I_</recordid><startdate>20000101</startdate><enddate>20000101</enddate><creator>Lin, Richard C</creator><creator>Scheller, Richard H</creator><general>Annual Reviews</general><general>Annual Reviews, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7TK</scope><scope>7X8</scope></search><sort><creationdate>20000101</creationdate><title>MECHANISMS OF SYNAPTIC VESICLE EXOCYTOSIS</title><author>Lin, Richard C ; Scheller, Richard H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a486t-3a6a6909cb7fa0c150cebc52e52ff24b2089ae2a2b76244fb016acb970bcf5703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Animals</topic><topic>Calcium - metabolism</topic><topic>Calcium-Binding Proteins</topic><topic>Carrier Proteins - metabolism</topic><topic>Exocytosis - physiology</topic><topic>Humans</topic><topic>membrane fusion</topic><topic>Membrane Fusion - physiology</topic><topic>Membrane Glycoproteins - metabolism</topic><topic>Membrane Proteins - metabolism</topic><topic>Munc18 Proteins</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Phosphorylation</topic><topic>rab3A GTP-Binding Protein - metabolism</topic><topic>Signal Transduction - physiology</topic><topic>SNARE</topic><topic>SNARE complex</topic><topic>SNARE Proteins</topic><topic>Synaptic Vesicles - metabolism</topic><topic>Synaptic Vesicles - physiology</topic><topic>Synaptotagmins</topic><topic>syntaxin</topic><topic>VAMP</topic><topic>vesicle trafficking</topic><topic>Vesicular Transport Proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Richard C</creatorcontrib><creatorcontrib>Scheller, Richard H</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Proquest Nursing & Allied Health Source</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Database (ProQuest)</collection><collection>ProQuest Biological Science Journals</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Annual review of cell and developmental biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Richard C</au><au>Scheller, Richard H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MECHANISMS OF SYNAPTIC VESICLE EXOCYTOSIS</atitle><jtitle>Annual review of cell and developmental biology</jtitle><addtitle>Annu Rev Cell Dev Biol</addtitle><date>2000-01-01</date><risdate>2000</risdate><volume>16</volume><issue>1</issue><spage>19</spage><epage>49</epage><pages>19-49</pages><issn>1081-0706</issn><eissn>1530-8995</eissn><coden>ARDBF8</coden><abstract>Chemical synaptic transmission serves as the main form of cell to cell
communication in the nervous system. Neurotransmitter release occurs through
the process of regulated exocytosis, in which a synaptic vesicle releases its
contents in response to an increase in calcium. The use of genetic,
biochemical, structural, and functional studies has led to the identification
of factors important in the synaptic vesicle life cycle. Here we focus on the
prominent role of SNARE (soluble NSF attachment protein receptor) proteins
during membrane fusion and the regulation of SNARE function by Rab3a, nSec1,
and NSF. Many of the proteins important for transmitter release have homologs
involved in intracellular vesicle transport, and all forms of vesicle
trafficking share common basic principles. Finally, modifications to the
synaptic exocytosis pathway are very likely to underlie certain forms of
synaptic plasticity and therefore contribute to learning and memory.</abstract><cop>Palo Alto, CA 94303-0139</cop><cop>4139 El Camino Way, P.O. Box 10139</cop><cop>USA</cop><pub>Annual Reviews</pub><pmid>11031229</pmid><doi>10.1146/annurev.cellbio.16.1.19</doi><tpages>31</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1081-0706 |
ispartof | Annual review of cell and developmental biology, 2000-01, Vol.16 (1), p.19-49 |
issn | 1081-0706 1530-8995 |
language | eng |
recordid | cdi_pubmed_primary_11031229 |
source | Annual Reviews Sciences archive collection |
subjects | Animals Calcium - metabolism Calcium-Binding Proteins Carrier Proteins - metabolism Exocytosis - physiology Humans membrane fusion Membrane Fusion - physiology Membrane Glycoproteins - metabolism Membrane Proteins - metabolism Munc18 Proteins Nerve Tissue Proteins - metabolism Phosphorylation rab3A GTP-Binding Protein - metabolism Signal Transduction - physiology SNARE SNARE complex SNARE Proteins Synaptic Vesicles - metabolism Synaptic Vesicles - physiology Synaptotagmins syntaxin VAMP vesicle trafficking Vesicular Transport Proteins |
title | MECHANISMS OF SYNAPTIC VESICLE EXOCYTOSIS |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A47%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MECHANISMS%20OF%20SYNAPTIC%20VESICLE%20EXOCYTOSIS&rft.jtitle=Annual%20review%20of%20cell%20and%20developmental%20biology&rft.au=Lin,%20Richard%20C&rft.date=2000-01-01&rft.volume=16&rft.issue=1&rft.spage=19&rft.epage=49&rft.pages=19-49&rft.issn=1081-0706&rft.eissn=1530-8995&rft.coden=ARDBF8&rft_id=info:doi/10.1146/annurev.cellbio.16.1.19&rft_dat=%3Cproquest_pubme%3E72339319%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a486t-3a6a6909cb7fa0c150cebc52e52ff24b2089ae2a2b76244fb016acb970bcf5703%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=217964787&rft_id=info:pmid/11031229&rfr_iscdi=true |