Loading…

MECHANISMS OF SYNAPTIC VESICLE EXOCYTOSIS

Chemical synaptic transmission serves as the main form of cell to cell communication in the nervous system. Neurotransmitter release occurs through the process of regulated exocytosis, in which a synaptic vesicle releases its contents in response to an increase in calcium. The use of genetic, bioche...

Full description

Saved in:
Bibliographic Details
Published in:Annual review of cell and developmental biology 2000-01, Vol.16 (1), p.19-49
Main Authors: Lin, Richard C, Scheller, Richard H
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a486t-3a6a6909cb7fa0c150cebc52e52ff24b2089ae2a2b76244fb016acb970bcf5703
cites cdi_FETCH-LOGICAL-a486t-3a6a6909cb7fa0c150cebc52e52ff24b2089ae2a2b76244fb016acb970bcf5703
container_end_page 49
container_issue 1
container_start_page 19
container_title Annual review of cell and developmental biology
container_volume 16
creator Lin, Richard C
Scheller, Richard H
description Chemical synaptic transmission serves as the main form of cell to cell communication in the nervous system. Neurotransmitter release occurs through the process of regulated exocytosis, in which a synaptic vesicle releases its contents in response to an increase in calcium. The use of genetic, biochemical, structural, and functional studies has led to the identification of factors important in the synaptic vesicle life cycle. Here we focus on the prominent role of SNARE (soluble NSF attachment protein receptor) proteins during membrane fusion and the regulation of SNARE function by Rab3a, nSec1, and NSF. Many of the proteins important for transmitter release have homologs involved in intracellular vesicle transport, and all forms of vesicle trafficking share common basic principles. Finally, modifications to the synaptic exocytosis pathway are very likely to underlie certain forms of synaptic plasticity and therefore contribute to learning and memory.
doi_str_mv 10.1146/annurev.cellbio.16.1.19
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_11031229</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72339319</sourcerecordid><originalsourceid>FETCH-LOGICAL-a486t-3a6a6909cb7fa0c150cebc52e52ff24b2089ae2a2b76244fb016acb970bcf5703</originalsourceid><addsrcrecordid>eNqNkMFKw0AQhhdRrFZfQYsHwUPizG6ymwUvJaQ2UFshVexp2Y0baGmbmm0U397UBgQvyhxmDt98zPyEXCL4iAG_1et1Xdl3P7fLpZmXPnIffZQH5ARDBl4kZXjYzBChBwJ4h5w6twAAyVh4TDqIwJBSeUJuHpJ42B-n2UPWmwx62Wzcf5ymce85ydJ4lPSSl0k8m06yNDsjR4VeOnve9i55GiTTeOiNJvdp3B95Ooj41mOaay5B5kYUGnIMIbcmD6kNaVHQwFCIpLZUUyM4DYLCAHKdGynA5EUogHXJ9d67qcq32rqtWs3d7k-9tmXtlKCMSYbyTxCFoE1hA179AhdlXa2bJxRFIXkgItFAYg_lVelcZQu1qeYrXX0qBLXLXLWZqzZzhVyh-r7jotXXZmVff_bakBvgbg_sDHrZOOb2w_3b_wW5i5I_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217964787</pqid></control><display><type>article</type><title>MECHANISMS OF SYNAPTIC VESICLE EXOCYTOSIS</title><source>Annual Reviews Sciences archive collection</source><creator>Lin, Richard C ; Scheller, Richard H</creator><creatorcontrib>Lin, Richard C ; Scheller, Richard H</creatorcontrib><description>Chemical synaptic transmission serves as the main form of cell to cell communication in the nervous system. Neurotransmitter release occurs through the process of regulated exocytosis, in which a synaptic vesicle releases its contents in response to an increase in calcium. The use of genetic, biochemical, structural, and functional studies has led to the identification of factors important in the synaptic vesicle life cycle. Here we focus on the prominent role of SNARE (soluble NSF attachment protein receptor) proteins during membrane fusion and the regulation of SNARE function by Rab3a, nSec1, and NSF. Many of the proteins important for transmitter release have homologs involved in intracellular vesicle transport, and all forms of vesicle trafficking share common basic principles. Finally, modifications to the synaptic exocytosis pathway are very likely to underlie certain forms of synaptic plasticity and therefore contribute to learning and memory.</description><identifier>ISSN: 1081-0706</identifier><identifier>EISSN: 1530-8995</identifier><identifier>DOI: 10.1146/annurev.cellbio.16.1.19</identifier><identifier>PMID: 11031229</identifier><identifier>CODEN: ARDBF8</identifier><language>eng</language><publisher>Palo Alto, CA 94303-0139: Annual Reviews</publisher><subject>Animals ; Calcium - metabolism ; Calcium-Binding Proteins ; Carrier Proteins - metabolism ; Exocytosis - physiology ; Humans ; membrane fusion ; Membrane Fusion - physiology ; Membrane Glycoproteins - metabolism ; Membrane Proteins - metabolism ; Munc18 Proteins ; Nerve Tissue Proteins - metabolism ; Phosphorylation ; rab3A GTP-Binding Protein - metabolism ; Signal Transduction - physiology ; SNARE ; SNARE complex ; SNARE Proteins ; Synaptic Vesicles - metabolism ; Synaptic Vesicles - physiology ; Synaptotagmins ; syntaxin ; VAMP ; vesicle trafficking ; Vesicular Transport Proteins</subject><ispartof>Annual review of cell and developmental biology, 2000-01, Vol.16 (1), p.19-49</ispartof><rights>Copyright © 2000 by Annual Reviews. All rights reserved</rights><rights>Copyright Annual Reviews, Inc. 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a486t-3a6a6909cb7fa0c150cebc52e52ff24b2089ae2a2b76244fb016acb970bcf5703</citedby><cites>FETCH-LOGICAL-a486t-3a6a6909cb7fa0c150cebc52e52ff24b2089ae2a2b76244fb016acb970bcf5703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.annualreviews.org/content/journals/10.1146/annurev.cellbio.16.1.19?crawler=true&amp;mimetype=application/pdf$$EPDF$$P50$$Gannualreviews$$H</linktopdf><linktohtml>$$Uhttps://www.annualreviews.org/content/journals/10.1146/annurev.cellbio.16.1.19$$EHTML$$P50$$Gannualreviews$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,78274,78379</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11031229$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Richard C</creatorcontrib><creatorcontrib>Scheller, Richard H</creatorcontrib><title>MECHANISMS OF SYNAPTIC VESICLE EXOCYTOSIS</title><title>Annual review of cell and developmental biology</title><addtitle>Annu Rev Cell Dev Biol</addtitle><description>Chemical synaptic transmission serves as the main form of cell to cell communication in the nervous system. Neurotransmitter release occurs through the process of regulated exocytosis, in which a synaptic vesicle releases its contents in response to an increase in calcium. The use of genetic, biochemical, structural, and functional studies has led to the identification of factors important in the synaptic vesicle life cycle. Here we focus on the prominent role of SNARE (soluble NSF attachment protein receptor) proteins during membrane fusion and the regulation of SNARE function by Rab3a, nSec1, and NSF. Many of the proteins important for transmitter release have homologs involved in intracellular vesicle transport, and all forms of vesicle trafficking share common basic principles. Finally, modifications to the synaptic exocytosis pathway are very likely to underlie certain forms of synaptic plasticity and therefore contribute to learning and memory.</description><subject>Animals</subject><subject>Calcium - metabolism</subject><subject>Calcium-Binding Proteins</subject><subject>Carrier Proteins - metabolism</subject><subject>Exocytosis - physiology</subject><subject>Humans</subject><subject>membrane fusion</subject><subject>Membrane Fusion - physiology</subject><subject>Membrane Glycoproteins - metabolism</subject><subject>Membrane Proteins - metabolism</subject><subject>Munc18 Proteins</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Phosphorylation</subject><subject>rab3A GTP-Binding Protein - metabolism</subject><subject>Signal Transduction - physiology</subject><subject>SNARE</subject><subject>SNARE complex</subject><subject>SNARE Proteins</subject><subject>Synaptic Vesicles - metabolism</subject><subject>Synaptic Vesicles - physiology</subject><subject>Synaptotagmins</subject><subject>syntaxin</subject><subject>VAMP</subject><subject>vesicle trafficking</subject><subject>Vesicular Transport Proteins</subject><issn>1081-0706</issn><issn>1530-8995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqNkMFKw0AQhhdRrFZfQYsHwUPizG6ymwUvJaQ2UFshVexp2Y0baGmbmm0U397UBgQvyhxmDt98zPyEXCL4iAG_1et1Xdl3P7fLpZmXPnIffZQH5ARDBl4kZXjYzBChBwJ4h5w6twAAyVh4TDqIwJBSeUJuHpJ42B-n2UPWmwx62Wzcf5ymce85ydJ4lPSSl0k8m06yNDsjR4VeOnve9i55GiTTeOiNJvdp3B95Ooj41mOaay5B5kYUGnIMIbcmD6kNaVHQwFCIpLZUUyM4DYLCAHKdGynA5EUogHXJ9d67qcq32rqtWs3d7k-9tmXtlKCMSYbyTxCFoE1hA179AhdlXa2bJxRFIXkgItFAYg_lVelcZQu1qeYrXX0qBLXLXLWZqzZzhVyh-r7jotXXZmVff_bakBvgbg_sDHrZOOb2w_3b_wW5i5I_</recordid><startdate>20000101</startdate><enddate>20000101</enddate><creator>Lin, Richard C</creator><creator>Scheller, Richard H</creator><general>Annual Reviews</general><general>Annual Reviews, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7TK</scope><scope>7X8</scope></search><sort><creationdate>20000101</creationdate><title>MECHANISMS OF SYNAPTIC VESICLE EXOCYTOSIS</title><author>Lin, Richard C ; Scheller, Richard H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a486t-3a6a6909cb7fa0c150cebc52e52ff24b2089ae2a2b76244fb016acb970bcf5703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Animals</topic><topic>Calcium - metabolism</topic><topic>Calcium-Binding Proteins</topic><topic>Carrier Proteins - metabolism</topic><topic>Exocytosis - physiology</topic><topic>Humans</topic><topic>membrane fusion</topic><topic>Membrane Fusion - physiology</topic><topic>Membrane Glycoproteins - metabolism</topic><topic>Membrane Proteins - metabolism</topic><topic>Munc18 Proteins</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Phosphorylation</topic><topic>rab3A GTP-Binding Protein - metabolism</topic><topic>Signal Transduction - physiology</topic><topic>SNARE</topic><topic>SNARE complex</topic><topic>SNARE Proteins</topic><topic>Synaptic Vesicles - metabolism</topic><topic>Synaptic Vesicles - physiology</topic><topic>Synaptotagmins</topic><topic>syntaxin</topic><topic>VAMP</topic><topic>vesicle trafficking</topic><topic>Vesicular Transport Proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Richard C</creatorcontrib><creatorcontrib>Scheller, Richard H</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Proquest Nursing &amp; Allied Health Source</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Database (ProQuest)</collection><collection>ProQuest Biological Science Journals</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Annual review of cell and developmental biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Richard C</au><au>Scheller, Richard H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MECHANISMS OF SYNAPTIC VESICLE EXOCYTOSIS</atitle><jtitle>Annual review of cell and developmental biology</jtitle><addtitle>Annu Rev Cell Dev Biol</addtitle><date>2000-01-01</date><risdate>2000</risdate><volume>16</volume><issue>1</issue><spage>19</spage><epage>49</epage><pages>19-49</pages><issn>1081-0706</issn><eissn>1530-8995</eissn><coden>ARDBF8</coden><abstract>Chemical synaptic transmission serves as the main form of cell to cell communication in the nervous system. Neurotransmitter release occurs through the process of regulated exocytosis, in which a synaptic vesicle releases its contents in response to an increase in calcium. The use of genetic, biochemical, structural, and functional studies has led to the identification of factors important in the synaptic vesicle life cycle. Here we focus on the prominent role of SNARE (soluble NSF attachment protein receptor) proteins during membrane fusion and the regulation of SNARE function by Rab3a, nSec1, and NSF. Many of the proteins important for transmitter release have homologs involved in intracellular vesicle transport, and all forms of vesicle trafficking share common basic principles. Finally, modifications to the synaptic exocytosis pathway are very likely to underlie certain forms of synaptic plasticity and therefore contribute to learning and memory.</abstract><cop>Palo Alto, CA 94303-0139</cop><cop>4139 El Camino Way, P.O. Box 10139</cop><cop>USA</cop><pub>Annual Reviews</pub><pmid>11031229</pmid><doi>10.1146/annurev.cellbio.16.1.19</doi><tpages>31</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1081-0706
ispartof Annual review of cell and developmental biology, 2000-01, Vol.16 (1), p.19-49
issn 1081-0706
1530-8995
language eng
recordid cdi_pubmed_primary_11031229
source Annual Reviews Sciences archive collection
subjects Animals
Calcium - metabolism
Calcium-Binding Proteins
Carrier Proteins - metabolism
Exocytosis - physiology
Humans
membrane fusion
Membrane Fusion - physiology
Membrane Glycoproteins - metabolism
Membrane Proteins - metabolism
Munc18 Proteins
Nerve Tissue Proteins - metabolism
Phosphorylation
rab3A GTP-Binding Protein - metabolism
Signal Transduction - physiology
SNARE
SNARE complex
SNARE Proteins
Synaptic Vesicles - metabolism
Synaptic Vesicles - physiology
Synaptotagmins
syntaxin
VAMP
vesicle trafficking
Vesicular Transport Proteins
title MECHANISMS OF SYNAPTIC VESICLE EXOCYTOSIS
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A47%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MECHANISMS%20OF%20SYNAPTIC%20VESICLE%20EXOCYTOSIS&rft.jtitle=Annual%20review%20of%20cell%20and%20developmental%20biology&rft.au=Lin,%20Richard%20C&rft.date=2000-01-01&rft.volume=16&rft.issue=1&rft.spage=19&rft.epage=49&rft.pages=19-49&rft.issn=1081-0706&rft.eissn=1530-8995&rft.coden=ARDBF8&rft_id=info:doi/10.1146/annurev.cellbio.16.1.19&rft_dat=%3Cproquest_pubme%3E72339319%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a486t-3a6a6909cb7fa0c150cebc52e52ff24b2089ae2a2b76244fb016acb970bcf5703%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=217964787&rft_id=info:pmid/11031229&rfr_iscdi=true