Loading…

Activation of retinoic acid receptor alpha is sufficient for full induction of retinoid responses in SK-BR-3 and T47D human breast cancer cells

Retinoid signaling via retinoic acid (RA) and retinoid X receptors (RARs and RXRs) regulates mammary epithelial cell growth and differentiation. Loss of RAR-beta might represent an early event during breast carcinogenesis. Higher differentiated, estrogen-dependent, estrogen receptor (ER)-positive (E...

Full description

Saved in:
Bibliographic Details
Published in:Cancer research (Chicago, Ill.) Ill.), 2000-10, Vol.60 (19), p.5479
Main Authors: Schneider, S M, Offterdinger, M, Huber, H, Grunt, T W
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Retinoid signaling via retinoic acid (RA) and retinoid X receptors (RARs and RXRs) regulates mammary epithelial cell growth and differentiation. Loss of RAR-beta might represent an early event during breast carcinogenesis. Higher differentiated, estrogen-dependent, estrogen receptor (ER)-positive (ER+) mammary carcinoma cells have been found to contain relatively high levels of RAR-alpha and to be responsive to retinoids, whereas most undifferentiated, estrogen-independent, ER-negative (ER-) cells are characterized by low RAR-alpha expression and by retinoid resistance. In contrast, RAR-gamma is detectable at equal levels in both ER+ and ER- cells. In the present investigation, we directly examined the relative contribution of the distinct retinoid receptors to the retinoid response of breast cancer cells by comparing the effects of low concentrations of specific retinoids, which selectively activate individual receptor subtypes, on growth, cell cycle distribution, apoptosis, and on the autoregulation of RAR-alpha and RAR-gamma in ER- SK-BR-3 and ER+ T47D breast cancer cells. In vitro growth activity was determined by using a colorimetric cell viability assay and analysis of cell cycle distribution, and apoptosis was performed by flow cytometry of propidium iodide-stained or fluorescent Annexin V-labeled cells, respectively, whereas expression of RAR-alpha and RAR-gamma was determined by Northern blotting. Both cell lines are retinoid sensitive and express high amounts of RAR-alpha, RAR-gamma, and RXR-alpha. RAR-alpha-selective compounds (AM80 and AM580) inhibit cell growth, induce G1 arrest, stimulate apoptosis, and up-regulate RAR-alpha and RAR-gamma mRNA as efficiently as RAR/RXR-pan-reactive (9-cis RA) and RAR-pan-reactive retinoids (all-trans RA, TTNPB). Remarkably, an RAR-alpha antagonist (Ro 41-5253) not only blocks the RAR-alpha-selective agonists but also the pan-reactive compounds. In contrast, RAR-13-selective (CD417), RAR-gamma-selective (CD437/AHPN), and RXR-alpha-selective (Ro 25-7386) retinoids exert no effects on the examined parameters. Thus, our results support the idea that RAR-alpha is the crucial receptor mediating the biological effects during retinoid signaling in both ER- SK-BR-3 and ER+ T47D human breast cancer cells.
ISSN:0008-5472