Loading…

Comparison of low-contrast detail perception on storage phosphor radiographs and digital flat panel detector images

A contrast detail analysis was performed to compare perception of low-contrast details on X-ray images derived from digital storage phosphor radiography and from a flat panel detector system based on a cesium iodide/amorphous silicon matrix. The CDRAD 2.0 phantom was used to perform a comparative co...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on medical imaging 2001-03, Vol.20 (3), p.239-242
Main Authors: Peer, S., Neitzel, U., Giacomuzzi, S.M., Peer, R., Gassner, E., Steingruber, I., Jaschke, W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A contrast detail analysis was performed to compare perception of low-contrast details on X-ray images derived from digital storage phosphor radiography and from a flat panel detector system based on a cesium iodide/amorphous silicon matrix. The CDRAD 2.0 phantom was used to perform a comparative contrast detail analysis of a clinical storage phosphor radiography system and an indirect type digital flat panel detector unit. Images were acquired at exposure levels comparable to film speeds of 50/100/200/400 and 800. Four observers evaluated a total of 50 films with respect to the threshold contrast for each detail size. The numbers of correctly identified objects were determined for all image subsets. The overall results show that low-contrast detail perception with digital flat panel detector images is better than with state of the art storage phosphor screens. This is especially true for the low-exposure setting, where a nearly 10% higher correct observation ratio is reached. Given its high detective quantum efficiency the digital flat panel technology based on the cesium iodide scintillator/amorphous silicon matrix is best suited for detection of low-contrast detail structures, which shows its high potential for clinical imaging.
ISSN:0278-0062
1558-254X
DOI:10.1109/42.918474