Loading…
Functional Activity and Role of Cation-Efflux Family Members in Ni Hyperaccumulation in Thlaspi goesingense
The ability of Thlaspi goesingense to hyperaccumulate Ni seems to be governed in part by enhanced accumulation of Ni within leaf vacuoles. We have characterized genes from T. goesingense encoding putative vacuolar metal ion transport proteins, termed metal tolerance proteins (TgMTPs). These proteins...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2001-08, Vol.98 (17), p.9995-10000 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c518t-f1a6ce1c7912ed5f85cfc7b614b4f45529f6c91c9902da4fc0624e81d9ea4b233 |
---|---|
cites | cdi_FETCH-LOGICAL-c518t-f1a6ce1c7912ed5f85cfc7b614b4f45529f6c91c9902da4fc0624e81d9ea4b233 |
container_end_page | 10000 |
container_issue | 17 |
container_start_page | 9995 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 98 |
creator | Persans, Michael W. Nieman, Ken Salt, David E. |
description | The ability of Thlaspi goesingense to hyperaccumulate Ni seems to be governed in part by enhanced accumulation of Ni within leaf vacuoles. We have characterized genes from T. goesingense encoding putative vacuolar metal ion transport proteins, termed metal tolerance proteins (TgMTPs). These proteins contain all of the features of cation-efflux family members, and evidence indicates they are derived from a single genomic sequence (TgMTP1) that gives rise to an unspliced (TgMTP1t1) and a spliced (TgMTP1t2) transcript. Heterologous expression of these transcripts in yeast lacking the TgMTP1 orthologues COT1 and ZRC1 complements the metal sensitivity of these yeast strains, suggesting that TgMTP1s are able to transport metal ions into the yeast vacuole in a manner similar to COT1 and ZRC1. The unspliced and spliced TgMTP1 variants differ within a histidine-rich putative metal-binding domain, and these sequence differences are reflected as alterations in the metal specificities of these metal ion transporters. When expressed in yeast, TgMTP1t1 confers the highest level of tolerance to Cd, Co, and Zn, whereas TgMTP1t2 confers the highest tolerance to Ni. TgMTP1 transcripts are highly expressed in T. goesingense compared with orthologues in the nonaccumulators Arabidopsis thaliana, Thlaspi arvense, and Brassica juncea. We propose that the high-level expression of TgMTP1 in T. goesingense accounts for the enhanced ability of this hyperaccumulator to accumulate metal ions within shoot vacuoles. |
doi_str_mv | 10.1073/pnas.171039798 |
format | article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmed_primary_11481436</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3056466</jstor_id><sourcerecordid>3056466</sourcerecordid><originalsourceid>FETCH-LOGICAL-c518t-f1a6ce1c7912ed5f85cfc7b614b4f45529f6c91c9902da4fc0624e81d9ea4b233</originalsourceid><addsrcrecordid>eNptkcFv0zAYxS0EYmVw5YSQxQFOKf4SO4klLlO1bkgDJDTOluPYnYtjZ3Yyrf_9ElrKQJxs-f3e86fvIfQayBJIVXzsvUxLqIAUvOL1E7QAwiErKSdP0YKQvMpqmtMT9CKlLSGEs5o8RycAtAZalAv0cz16NdjgpcNn0-XODjssfYu_B6dxMHglZzU7N8aN93gtO-t2-IvuGh0Tth5_tfhy1-solRq70f2i5_frGydTb_Em6GT9RvukX6JnRrqkXx3OU_RjfX69usyuvl18Xp1dZYpBPWQGZKk0qIpDrltmaqaMqpoSaEMNZSznplQcFOckbyU1ipQ51TW0XEva5EVxij7tc_ux6XSrtB-idKKPtpNxJ4K04m_F2xuxCXeCMVaWk_39wR7D7ajTIDqblHZOeh3GJKDieVnB_M-7f8BtGOO0ySRyAkVVcD5Dyz2kYkgpanOcA4iYKxRzheJY4WR4-3j6P_ihswn4cABm42-Z11OG4JwzYUbnBn0_PIr6PzkBb_bANg0hHomCsJJOm3gAkHy7HQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201373993</pqid></control><display><type>article</type><title>Functional Activity and Role of Cation-Efflux Family Members in Ni Hyperaccumulation in Thlaspi goesingense</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Persans, Michael W. ; Nieman, Ken ; Salt, David E.</creator><creatorcontrib>Persans, Michael W. ; Nieman, Ken ; Salt, David E.</creatorcontrib><description>The ability of Thlaspi goesingense to hyperaccumulate Ni seems to be governed in part by enhanced accumulation of Ni within leaf vacuoles. We have characterized genes from T. goesingense encoding putative vacuolar metal ion transport proteins, termed metal tolerance proteins (TgMTPs). These proteins contain all of the features of cation-efflux family members, and evidence indicates they are derived from a single genomic sequence (TgMTP1) that gives rise to an unspliced (TgMTP1t1) and a spliced (TgMTP1t2) transcript. Heterologous expression of these transcripts in yeast lacking the TgMTP1 orthologues COT1 and ZRC1 complements the metal sensitivity of these yeast strains, suggesting that TgMTP1s are able to transport metal ions into the yeast vacuole in a manner similar to COT1 and ZRC1. The unspliced and spliced TgMTP1 variants differ within a histidine-rich putative metal-binding domain, and these sequence differences are reflected as alterations in the metal specificities of these metal ion transporters. When expressed in yeast, TgMTP1t1 confers the highest level of tolerance to Cd, Co, and Zn, whereas TgMTP1t2 confers the highest tolerance to Ni. TgMTP1 transcripts are highly expressed in T. goesingense compared with orthologues in the nonaccumulators Arabidopsis thaliana, Thlaspi arvense, and Brassica juncea. We propose that the high-level expression of TgMTP1 in T. goesingense accounts for the enhanced ability of this hyperaccumulator to accumulate metal ions within shoot vacuoles.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.171039798</identifier><identifier>PMID: 11481436</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amino Acid Sequence ; Arabidopsis - metabolism ; Arabidopsis thaliana ; Biological Sciences ; Brassica - metabolism ; Brassica juncea ; Cadmium - metabolism ; Cadmium - toxicity ; Carrier Proteins - genetics ; Carrier Proteins - metabolism ; Cation Transport Proteins ; Cations - metabolism ; Cobalt - metabolism ; Cobalt - toxicity ; Complementary DNA ; COT1 protein ; DNA ; Drug Resistance - genetics ; Drug Resistance, Microbial - genetics ; Flowers & plants ; Fungal Proteins - genetics ; Fungal Proteins - metabolism ; Genes ; Genomics ; Hyperaccumulators ; Ion Transport ; Ions ; Membrane Transport Proteins ; Metal ions ; metal tolerance protein ; Metals ; Molecular Sequence Data ; Nickel - metabolism ; Nickel - toxicity ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plant Shoots - metabolism ; Plant Shoots - ultrastructure ; Plants - genetics ; Plants - metabolism ; Polymerase Chain Reaction ; Protein Isoforms - metabolism ; Protein Structure, Tertiary ; Proteins ; Recombinant Fusion Proteins - metabolism ; RNA ; RNA Splicing ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae - ultrastructure ; Saccharomyces cerevisiae Proteins ; Sequence Alignment ; Sequence Homology, Amino Acid ; Substrate Specificity ; TgMTP1t1 gene ; TgMTP1t2 gene ; Thlaspi arvense ; Thlaspi goesingense ; Vacuoles ; Vacuoles - metabolism ; Yeasts ; Zinc - metabolism ; Zinc - toxicity ; ZRC1 protein</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2001-08, Vol.98 (17), p.9995-10000</ispartof><rights>Copyright 1993-2001 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Aug 14, 2001</rights><rights>Copyright © 2001, The National Academy of Sciences 2001</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c518t-f1a6ce1c7912ed5f85cfc7b614b4f45529f6c91c9902da4fc0624e81d9ea4b233</citedby><cites>FETCH-LOGICAL-c518t-f1a6ce1c7912ed5f85cfc7b614b4f45529f6c91c9902da4fc0624e81d9ea4b233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/98/17.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3056466$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3056466$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774,58219,58452</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11481436$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Persans, Michael W.</creatorcontrib><creatorcontrib>Nieman, Ken</creatorcontrib><creatorcontrib>Salt, David E.</creatorcontrib><title>Functional Activity and Role of Cation-Efflux Family Members in Ni Hyperaccumulation in Thlaspi goesingense</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The ability of Thlaspi goesingense to hyperaccumulate Ni seems to be governed in part by enhanced accumulation of Ni within leaf vacuoles. We have characterized genes from T. goesingense encoding putative vacuolar metal ion transport proteins, termed metal tolerance proteins (TgMTPs). These proteins contain all of the features of cation-efflux family members, and evidence indicates they are derived from a single genomic sequence (TgMTP1) that gives rise to an unspliced (TgMTP1t1) and a spliced (TgMTP1t2) transcript. Heterologous expression of these transcripts in yeast lacking the TgMTP1 orthologues COT1 and ZRC1 complements the metal sensitivity of these yeast strains, suggesting that TgMTP1s are able to transport metal ions into the yeast vacuole in a manner similar to COT1 and ZRC1. The unspliced and spliced TgMTP1 variants differ within a histidine-rich putative metal-binding domain, and these sequence differences are reflected as alterations in the metal specificities of these metal ion transporters. When expressed in yeast, TgMTP1t1 confers the highest level of tolerance to Cd, Co, and Zn, whereas TgMTP1t2 confers the highest tolerance to Ni. TgMTP1 transcripts are highly expressed in T. goesingense compared with orthologues in the nonaccumulators Arabidopsis thaliana, Thlaspi arvense, and Brassica juncea. We propose that the high-level expression of TgMTP1 in T. goesingense accounts for the enhanced ability of this hyperaccumulator to accumulate metal ions within shoot vacuoles.</description><subject>Amino Acid Sequence</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis thaliana</subject><subject>Biological Sciences</subject><subject>Brassica - metabolism</subject><subject>Brassica juncea</subject><subject>Cadmium - metabolism</subject><subject>Cadmium - toxicity</subject><subject>Carrier Proteins - genetics</subject><subject>Carrier Proteins - metabolism</subject><subject>Cation Transport Proteins</subject><subject>Cations - metabolism</subject><subject>Cobalt - metabolism</subject><subject>Cobalt - toxicity</subject><subject>Complementary DNA</subject><subject>COT1 protein</subject><subject>DNA</subject><subject>Drug Resistance - genetics</subject><subject>Drug Resistance, Microbial - genetics</subject><subject>Flowers & plants</subject><subject>Fungal Proteins - genetics</subject><subject>Fungal Proteins - metabolism</subject><subject>Genes</subject><subject>Genomics</subject><subject>Hyperaccumulators</subject><subject>Ion Transport</subject><subject>Ions</subject><subject>Membrane Transport Proteins</subject><subject>Metal ions</subject><subject>metal tolerance protein</subject><subject>Metals</subject><subject>Molecular Sequence Data</subject><subject>Nickel - metabolism</subject><subject>Nickel - toxicity</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plant Shoots - metabolism</subject><subject>Plant Shoots - ultrastructure</subject><subject>Plants - genetics</subject><subject>Plants - metabolism</subject><subject>Polymerase Chain Reaction</subject><subject>Protein Isoforms - metabolism</subject><subject>Protein Structure, Tertiary</subject><subject>Proteins</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>RNA</subject><subject>RNA Splicing</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae - ultrastructure</subject><subject>Saccharomyces cerevisiae Proteins</subject><subject>Sequence Alignment</subject><subject>Sequence Homology, Amino Acid</subject><subject>Substrate Specificity</subject><subject>TgMTP1t1 gene</subject><subject>TgMTP1t2 gene</subject><subject>Thlaspi arvense</subject><subject>Thlaspi goesingense</subject><subject>Vacuoles</subject><subject>Vacuoles - metabolism</subject><subject>Yeasts</subject><subject>Zinc - metabolism</subject><subject>Zinc - toxicity</subject><subject>ZRC1 protein</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNptkcFv0zAYxS0EYmVw5YSQxQFOKf4SO4klLlO1bkgDJDTOluPYnYtjZ3Yyrf_9ElrKQJxs-f3e86fvIfQayBJIVXzsvUxLqIAUvOL1E7QAwiErKSdP0YKQvMpqmtMT9CKlLSGEs5o8RycAtAZalAv0cz16NdjgpcNn0-XODjssfYu_B6dxMHglZzU7N8aN93gtO-t2-IvuGh0Tth5_tfhy1-solRq70f2i5_frGydTb_Em6GT9RvukX6JnRrqkXx3OU_RjfX69usyuvl18Xp1dZYpBPWQGZKk0qIpDrltmaqaMqpoSaEMNZSznplQcFOckbyU1ipQ51TW0XEva5EVxij7tc_ux6XSrtB-idKKPtpNxJ4K04m_F2xuxCXeCMVaWk_39wR7D7ajTIDqblHZOeh3GJKDieVnB_M-7f8BtGOO0ySRyAkVVcD5Dyz2kYkgpanOcA4iYKxRzheJY4WR4-3j6P_ihswn4cABm42-Z11OG4JwzYUbnBn0_PIr6PzkBb_bANg0hHomCsJJOm3gAkHy7HQ</recordid><startdate>20010814</startdate><enddate>20010814</enddate><creator>Persans, Michael W.</creator><creator>Nieman, Ken</creator><creator>Salt, David E.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20010814</creationdate><title>Functional Activity and Role of Cation-Efflux Family Members in Ni Hyperaccumulation in Thlaspi goesingense</title><author>Persans, Michael W. ; Nieman, Ken ; Salt, David E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c518t-f1a6ce1c7912ed5f85cfc7b614b4f45529f6c91c9902da4fc0624e81d9ea4b233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Amino Acid Sequence</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis thaliana</topic><topic>Biological Sciences</topic><topic>Brassica - metabolism</topic><topic>Brassica juncea</topic><topic>Cadmium - metabolism</topic><topic>Cadmium - toxicity</topic><topic>Carrier Proteins - genetics</topic><topic>Carrier Proteins - metabolism</topic><topic>Cation Transport Proteins</topic><topic>Cations - metabolism</topic><topic>Cobalt - metabolism</topic><topic>Cobalt - toxicity</topic><topic>Complementary DNA</topic><topic>COT1 protein</topic><topic>DNA</topic><topic>Drug Resistance - genetics</topic><topic>Drug Resistance, Microbial - genetics</topic><topic>Flowers & plants</topic><topic>Fungal Proteins - genetics</topic><topic>Fungal Proteins - metabolism</topic><topic>Genes</topic><topic>Genomics</topic><topic>Hyperaccumulators</topic><topic>Ion Transport</topic><topic>Ions</topic><topic>Membrane Transport Proteins</topic><topic>Metal ions</topic><topic>metal tolerance protein</topic><topic>Metals</topic><topic>Molecular Sequence Data</topic><topic>Nickel - metabolism</topic><topic>Nickel - toxicity</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plant Shoots - metabolism</topic><topic>Plant Shoots - ultrastructure</topic><topic>Plants - genetics</topic><topic>Plants - metabolism</topic><topic>Polymerase Chain Reaction</topic><topic>Protein Isoforms - metabolism</topic><topic>Protein Structure, Tertiary</topic><topic>Proteins</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>RNA</topic><topic>RNA Splicing</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae - ultrastructure</topic><topic>Saccharomyces cerevisiae Proteins</topic><topic>Sequence Alignment</topic><topic>Sequence Homology, Amino Acid</topic><topic>Substrate Specificity</topic><topic>TgMTP1t1 gene</topic><topic>TgMTP1t2 gene</topic><topic>Thlaspi arvense</topic><topic>Thlaspi goesingense</topic><topic>Vacuoles</topic><topic>Vacuoles - metabolism</topic><topic>Yeasts</topic><topic>Zinc - metabolism</topic><topic>Zinc - toxicity</topic><topic>ZRC1 protein</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Persans, Michael W.</creatorcontrib><creatorcontrib>Nieman, Ken</creatorcontrib><creatorcontrib>Salt, David E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Persans, Michael W.</au><au>Nieman, Ken</au><au>Salt, David E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional Activity and Role of Cation-Efflux Family Members in Ni Hyperaccumulation in Thlaspi goesingense</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2001-08-14</date><risdate>2001</risdate><volume>98</volume><issue>17</issue><spage>9995</spage><epage>10000</epage><pages>9995-10000</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The ability of Thlaspi goesingense to hyperaccumulate Ni seems to be governed in part by enhanced accumulation of Ni within leaf vacuoles. We have characterized genes from T. goesingense encoding putative vacuolar metal ion transport proteins, termed metal tolerance proteins (TgMTPs). These proteins contain all of the features of cation-efflux family members, and evidence indicates they are derived from a single genomic sequence (TgMTP1) that gives rise to an unspliced (TgMTP1t1) and a spliced (TgMTP1t2) transcript. Heterologous expression of these transcripts in yeast lacking the TgMTP1 orthologues COT1 and ZRC1 complements the metal sensitivity of these yeast strains, suggesting that TgMTP1s are able to transport metal ions into the yeast vacuole in a manner similar to COT1 and ZRC1. The unspliced and spliced TgMTP1 variants differ within a histidine-rich putative metal-binding domain, and these sequence differences are reflected as alterations in the metal specificities of these metal ion transporters. When expressed in yeast, TgMTP1t1 confers the highest level of tolerance to Cd, Co, and Zn, whereas TgMTP1t2 confers the highest tolerance to Ni. TgMTP1 transcripts are highly expressed in T. goesingense compared with orthologues in the nonaccumulators Arabidopsis thaliana, Thlaspi arvense, and Brassica juncea. We propose that the high-level expression of TgMTP1 in T. goesingense accounts for the enhanced ability of this hyperaccumulator to accumulate metal ions within shoot vacuoles.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>11481436</pmid><doi>10.1073/pnas.171039798</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2001-08, Vol.98 (17), p.9995-10000 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmed_primary_11481436 |
source | JSTOR Archival Journals and Primary Sources Collection; PubMed Central |
subjects | Amino Acid Sequence Arabidopsis - metabolism Arabidopsis thaliana Biological Sciences Brassica - metabolism Brassica juncea Cadmium - metabolism Cadmium - toxicity Carrier Proteins - genetics Carrier Proteins - metabolism Cation Transport Proteins Cations - metabolism Cobalt - metabolism Cobalt - toxicity Complementary DNA COT1 protein DNA Drug Resistance - genetics Drug Resistance, Microbial - genetics Flowers & plants Fungal Proteins - genetics Fungal Proteins - metabolism Genes Genomics Hyperaccumulators Ion Transport Ions Membrane Transport Proteins Metal ions metal tolerance protein Metals Molecular Sequence Data Nickel - metabolism Nickel - toxicity Plant Proteins - genetics Plant Proteins - metabolism Plant Shoots - metabolism Plant Shoots - ultrastructure Plants - genetics Plants - metabolism Polymerase Chain Reaction Protein Isoforms - metabolism Protein Structure, Tertiary Proteins Recombinant Fusion Proteins - metabolism RNA RNA Splicing Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae - ultrastructure Saccharomyces cerevisiae Proteins Sequence Alignment Sequence Homology, Amino Acid Substrate Specificity TgMTP1t1 gene TgMTP1t2 gene Thlaspi arvense Thlaspi goesingense Vacuoles Vacuoles - metabolism Yeasts Zinc - metabolism Zinc - toxicity ZRC1 protein |
title | Functional Activity and Role of Cation-Efflux Family Members in Ni Hyperaccumulation in Thlaspi goesingense |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A40%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20Activity%20and%20Role%20of%20Cation-Efflux%20Family%20Members%20in%20Ni%20Hyperaccumulation%20in%20Thlaspi%20goesingense&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Persans,%20Michael%20W.&rft.date=2001-08-14&rft.volume=98&rft.issue=17&rft.spage=9995&rft.epage=10000&rft.pages=9995-10000&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.171039798&rft_dat=%3Cjstor_pubme%3E3056466%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c518t-f1a6ce1c7912ed5f85cfc7b614b4f45529f6c91c9902da4fc0624e81d9ea4b233%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=201373993&rft_id=info:pmid/11481436&rft_jstor_id=3056466&rfr_iscdi=true |