Loading…

Functional Activity and Role of Cation-Efflux Family Members in Ni Hyperaccumulation in Thlaspi goesingense

The ability of Thlaspi goesingense to hyperaccumulate Ni seems to be governed in part by enhanced accumulation of Ni within leaf vacuoles. We have characterized genes from T. goesingense encoding putative vacuolar metal ion transport proteins, termed metal tolerance proteins (TgMTPs). These proteins...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2001-08, Vol.98 (17), p.9995-10000
Main Authors: Persans, Michael W., Nieman, Ken, Salt, David E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c518t-f1a6ce1c7912ed5f85cfc7b614b4f45529f6c91c9902da4fc0624e81d9ea4b233
cites cdi_FETCH-LOGICAL-c518t-f1a6ce1c7912ed5f85cfc7b614b4f45529f6c91c9902da4fc0624e81d9ea4b233
container_end_page 10000
container_issue 17
container_start_page 9995
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 98
creator Persans, Michael W.
Nieman, Ken
Salt, David E.
description The ability of Thlaspi goesingense to hyperaccumulate Ni seems to be governed in part by enhanced accumulation of Ni within leaf vacuoles. We have characterized genes from T. goesingense encoding putative vacuolar metal ion transport proteins, termed metal tolerance proteins (TgMTPs). These proteins contain all of the features of cation-efflux family members, and evidence indicates they are derived from a single genomic sequence (TgMTP1) that gives rise to an unspliced (TgMTP1t1) and a spliced (TgMTP1t2) transcript. Heterologous expression of these transcripts in yeast lacking the TgMTP1 orthologues COT1 and ZRC1 complements the metal sensitivity of these yeast strains, suggesting that TgMTP1s are able to transport metal ions into the yeast vacuole in a manner similar to COT1 and ZRC1. The unspliced and spliced TgMTP1 variants differ within a histidine-rich putative metal-binding domain, and these sequence differences are reflected as alterations in the metal specificities of these metal ion transporters. When expressed in yeast, TgMTP1t1 confers the highest level of tolerance to Cd, Co, and Zn, whereas TgMTP1t2 confers the highest tolerance to Ni. TgMTP1 transcripts are highly expressed in T. goesingense compared with orthologues in the nonaccumulators Arabidopsis thaliana, Thlaspi arvense, and Brassica juncea. We propose that the high-level expression of TgMTP1 in T. goesingense accounts for the enhanced ability of this hyperaccumulator to accumulate metal ions within shoot vacuoles.
doi_str_mv 10.1073/pnas.171039798
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmed_primary_11481436</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3056466</jstor_id><sourcerecordid>3056466</sourcerecordid><originalsourceid>FETCH-LOGICAL-c518t-f1a6ce1c7912ed5f85cfc7b614b4f45529f6c91c9902da4fc0624e81d9ea4b233</originalsourceid><addsrcrecordid>eNptkcFv0zAYxS0EYmVw5YSQxQFOKf4SO4klLlO1bkgDJDTOluPYnYtjZ3Yyrf_9ElrKQJxs-f3e86fvIfQayBJIVXzsvUxLqIAUvOL1E7QAwiErKSdP0YKQvMpqmtMT9CKlLSGEs5o8RycAtAZalAv0cz16NdjgpcNn0-XODjssfYu_B6dxMHglZzU7N8aN93gtO-t2-IvuGh0Tth5_tfhy1-solRq70f2i5_frGydTb_Em6GT9RvukX6JnRrqkXx3OU_RjfX69usyuvl18Xp1dZYpBPWQGZKk0qIpDrltmaqaMqpoSaEMNZSznplQcFOckbyU1ipQ51TW0XEva5EVxij7tc_ux6XSrtB-idKKPtpNxJ4K04m_F2xuxCXeCMVaWk_39wR7D7ajTIDqblHZOeh3GJKDieVnB_M-7f8BtGOO0ySRyAkVVcD5Dyz2kYkgpanOcA4iYKxRzheJY4WR4-3j6P_ihswn4cABm42-Z11OG4JwzYUbnBn0_PIr6PzkBb_bANg0hHomCsJJOm3gAkHy7HQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201373993</pqid></control><display><type>article</type><title>Functional Activity and Role of Cation-Efflux Family Members in Ni Hyperaccumulation in Thlaspi goesingense</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Persans, Michael W. ; Nieman, Ken ; Salt, David E.</creator><creatorcontrib>Persans, Michael W. ; Nieman, Ken ; Salt, David E.</creatorcontrib><description>The ability of Thlaspi goesingense to hyperaccumulate Ni seems to be governed in part by enhanced accumulation of Ni within leaf vacuoles. We have characterized genes from T. goesingense encoding putative vacuolar metal ion transport proteins, termed metal tolerance proteins (TgMTPs). These proteins contain all of the features of cation-efflux family members, and evidence indicates they are derived from a single genomic sequence (TgMTP1) that gives rise to an unspliced (TgMTP1t1) and a spliced (TgMTP1t2) transcript. Heterologous expression of these transcripts in yeast lacking the TgMTP1 orthologues COT1 and ZRC1 complements the metal sensitivity of these yeast strains, suggesting that TgMTP1s are able to transport metal ions into the yeast vacuole in a manner similar to COT1 and ZRC1. The unspliced and spliced TgMTP1 variants differ within a histidine-rich putative metal-binding domain, and these sequence differences are reflected as alterations in the metal specificities of these metal ion transporters. When expressed in yeast, TgMTP1t1 confers the highest level of tolerance to Cd, Co, and Zn, whereas TgMTP1t2 confers the highest tolerance to Ni. TgMTP1 transcripts are highly expressed in T. goesingense compared with orthologues in the nonaccumulators Arabidopsis thaliana, Thlaspi arvense, and Brassica juncea. We propose that the high-level expression of TgMTP1 in T. goesingense accounts for the enhanced ability of this hyperaccumulator to accumulate metal ions within shoot vacuoles.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.171039798</identifier><identifier>PMID: 11481436</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amino Acid Sequence ; Arabidopsis - metabolism ; Arabidopsis thaliana ; Biological Sciences ; Brassica - metabolism ; Brassica juncea ; Cadmium - metabolism ; Cadmium - toxicity ; Carrier Proteins - genetics ; Carrier Proteins - metabolism ; Cation Transport Proteins ; Cations - metabolism ; Cobalt - metabolism ; Cobalt - toxicity ; Complementary DNA ; COT1 protein ; DNA ; Drug Resistance - genetics ; Drug Resistance, Microbial - genetics ; Flowers &amp; plants ; Fungal Proteins - genetics ; Fungal Proteins - metabolism ; Genes ; Genomics ; Hyperaccumulators ; Ion Transport ; Ions ; Membrane Transport Proteins ; Metal ions ; metal tolerance protein ; Metals ; Molecular Sequence Data ; Nickel - metabolism ; Nickel - toxicity ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plant Shoots - metabolism ; Plant Shoots - ultrastructure ; Plants - genetics ; Plants - metabolism ; Polymerase Chain Reaction ; Protein Isoforms - metabolism ; Protein Structure, Tertiary ; Proteins ; Recombinant Fusion Proteins - metabolism ; RNA ; RNA Splicing ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae - ultrastructure ; Saccharomyces cerevisiae Proteins ; Sequence Alignment ; Sequence Homology, Amino Acid ; Substrate Specificity ; TgMTP1t1 gene ; TgMTP1t2 gene ; Thlaspi arvense ; Thlaspi goesingense ; Vacuoles ; Vacuoles - metabolism ; Yeasts ; Zinc - metabolism ; Zinc - toxicity ; ZRC1 protein</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2001-08, Vol.98 (17), p.9995-10000</ispartof><rights>Copyright 1993-2001 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Aug 14, 2001</rights><rights>Copyright © 2001, The National Academy of Sciences 2001</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c518t-f1a6ce1c7912ed5f85cfc7b614b4f45529f6c91c9902da4fc0624e81d9ea4b233</citedby><cites>FETCH-LOGICAL-c518t-f1a6ce1c7912ed5f85cfc7b614b4f45529f6c91c9902da4fc0624e81d9ea4b233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/98/17.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3056466$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3056466$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774,58219,58452</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11481436$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Persans, Michael W.</creatorcontrib><creatorcontrib>Nieman, Ken</creatorcontrib><creatorcontrib>Salt, David E.</creatorcontrib><title>Functional Activity and Role of Cation-Efflux Family Members in Ni Hyperaccumulation in Thlaspi goesingense</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The ability of Thlaspi goesingense to hyperaccumulate Ni seems to be governed in part by enhanced accumulation of Ni within leaf vacuoles. We have characterized genes from T. goesingense encoding putative vacuolar metal ion transport proteins, termed metal tolerance proteins (TgMTPs). These proteins contain all of the features of cation-efflux family members, and evidence indicates they are derived from a single genomic sequence (TgMTP1) that gives rise to an unspliced (TgMTP1t1) and a spliced (TgMTP1t2) transcript. Heterologous expression of these transcripts in yeast lacking the TgMTP1 orthologues COT1 and ZRC1 complements the metal sensitivity of these yeast strains, suggesting that TgMTP1s are able to transport metal ions into the yeast vacuole in a manner similar to COT1 and ZRC1. The unspliced and spliced TgMTP1 variants differ within a histidine-rich putative metal-binding domain, and these sequence differences are reflected as alterations in the metal specificities of these metal ion transporters. When expressed in yeast, TgMTP1t1 confers the highest level of tolerance to Cd, Co, and Zn, whereas TgMTP1t2 confers the highest tolerance to Ni. TgMTP1 transcripts are highly expressed in T. goesingense compared with orthologues in the nonaccumulators Arabidopsis thaliana, Thlaspi arvense, and Brassica juncea. We propose that the high-level expression of TgMTP1 in T. goesingense accounts for the enhanced ability of this hyperaccumulator to accumulate metal ions within shoot vacuoles.</description><subject>Amino Acid Sequence</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis thaliana</subject><subject>Biological Sciences</subject><subject>Brassica - metabolism</subject><subject>Brassica juncea</subject><subject>Cadmium - metabolism</subject><subject>Cadmium - toxicity</subject><subject>Carrier Proteins - genetics</subject><subject>Carrier Proteins - metabolism</subject><subject>Cation Transport Proteins</subject><subject>Cations - metabolism</subject><subject>Cobalt - metabolism</subject><subject>Cobalt - toxicity</subject><subject>Complementary DNA</subject><subject>COT1 protein</subject><subject>DNA</subject><subject>Drug Resistance - genetics</subject><subject>Drug Resistance, Microbial - genetics</subject><subject>Flowers &amp; plants</subject><subject>Fungal Proteins - genetics</subject><subject>Fungal Proteins - metabolism</subject><subject>Genes</subject><subject>Genomics</subject><subject>Hyperaccumulators</subject><subject>Ion Transport</subject><subject>Ions</subject><subject>Membrane Transport Proteins</subject><subject>Metal ions</subject><subject>metal tolerance protein</subject><subject>Metals</subject><subject>Molecular Sequence Data</subject><subject>Nickel - metabolism</subject><subject>Nickel - toxicity</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plant Shoots - metabolism</subject><subject>Plant Shoots - ultrastructure</subject><subject>Plants - genetics</subject><subject>Plants - metabolism</subject><subject>Polymerase Chain Reaction</subject><subject>Protein Isoforms - metabolism</subject><subject>Protein Structure, Tertiary</subject><subject>Proteins</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>RNA</subject><subject>RNA Splicing</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae - ultrastructure</subject><subject>Saccharomyces cerevisiae Proteins</subject><subject>Sequence Alignment</subject><subject>Sequence Homology, Amino Acid</subject><subject>Substrate Specificity</subject><subject>TgMTP1t1 gene</subject><subject>TgMTP1t2 gene</subject><subject>Thlaspi arvense</subject><subject>Thlaspi goesingense</subject><subject>Vacuoles</subject><subject>Vacuoles - metabolism</subject><subject>Yeasts</subject><subject>Zinc - metabolism</subject><subject>Zinc - toxicity</subject><subject>ZRC1 protein</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNptkcFv0zAYxS0EYmVw5YSQxQFOKf4SO4klLlO1bkgDJDTOluPYnYtjZ3Yyrf_9ElrKQJxs-f3e86fvIfQayBJIVXzsvUxLqIAUvOL1E7QAwiErKSdP0YKQvMpqmtMT9CKlLSGEs5o8RycAtAZalAv0cz16NdjgpcNn0-XODjssfYu_B6dxMHglZzU7N8aN93gtO-t2-IvuGh0Tth5_tfhy1-solRq70f2i5_frGydTb_Em6GT9RvukX6JnRrqkXx3OU_RjfX69usyuvl18Xp1dZYpBPWQGZKk0qIpDrltmaqaMqpoSaEMNZSznplQcFOckbyU1ipQ51TW0XEva5EVxij7tc_ux6XSrtB-idKKPtpNxJ4K04m_F2xuxCXeCMVaWk_39wR7D7ajTIDqblHZOeh3GJKDieVnB_M-7f8BtGOO0ySRyAkVVcD5Dyz2kYkgpanOcA4iYKxRzheJY4WR4-3j6P_ihswn4cABm42-Z11OG4JwzYUbnBn0_PIr6PzkBb_bANg0hHomCsJJOm3gAkHy7HQ</recordid><startdate>20010814</startdate><enddate>20010814</enddate><creator>Persans, Michael W.</creator><creator>Nieman, Ken</creator><creator>Salt, David E.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20010814</creationdate><title>Functional Activity and Role of Cation-Efflux Family Members in Ni Hyperaccumulation in Thlaspi goesingense</title><author>Persans, Michael W. ; Nieman, Ken ; Salt, David E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c518t-f1a6ce1c7912ed5f85cfc7b614b4f45529f6c91c9902da4fc0624e81d9ea4b233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Amino Acid Sequence</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis thaliana</topic><topic>Biological Sciences</topic><topic>Brassica - metabolism</topic><topic>Brassica juncea</topic><topic>Cadmium - metabolism</topic><topic>Cadmium - toxicity</topic><topic>Carrier Proteins - genetics</topic><topic>Carrier Proteins - metabolism</topic><topic>Cation Transport Proteins</topic><topic>Cations - metabolism</topic><topic>Cobalt - metabolism</topic><topic>Cobalt - toxicity</topic><topic>Complementary DNA</topic><topic>COT1 protein</topic><topic>DNA</topic><topic>Drug Resistance - genetics</topic><topic>Drug Resistance, Microbial - genetics</topic><topic>Flowers &amp; plants</topic><topic>Fungal Proteins - genetics</topic><topic>Fungal Proteins - metabolism</topic><topic>Genes</topic><topic>Genomics</topic><topic>Hyperaccumulators</topic><topic>Ion Transport</topic><topic>Ions</topic><topic>Membrane Transport Proteins</topic><topic>Metal ions</topic><topic>metal tolerance protein</topic><topic>Metals</topic><topic>Molecular Sequence Data</topic><topic>Nickel - metabolism</topic><topic>Nickel - toxicity</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plant Shoots - metabolism</topic><topic>Plant Shoots - ultrastructure</topic><topic>Plants - genetics</topic><topic>Plants - metabolism</topic><topic>Polymerase Chain Reaction</topic><topic>Protein Isoforms - metabolism</topic><topic>Protein Structure, Tertiary</topic><topic>Proteins</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>RNA</topic><topic>RNA Splicing</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae - ultrastructure</topic><topic>Saccharomyces cerevisiae Proteins</topic><topic>Sequence Alignment</topic><topic>Sequence Homology, Amino Acid</topic><topic>Substrate Specificity</topic><topic>TgMTP1t1 gene</topic><topic>TgMTP1t2 gene</topic><topic>Thlaspi arvense</topic><topic>Thlaspi goesingense</topic><topic>Vacuoles</topic><topic>Vacuoles - metabolism</topic><topic>Yeasts</topic><topic>Zinc - metabolism</topic><topic>Zinc - toxicity</topic><topic>ZRC1 protein</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Persans, Michael W.</creatorcontrib><creatorcontrib>Nieman, Ken</creatorcontrib><creatorcontrib>Salt, David E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Persans, Michael W.</au><au>Nieman, Ken</au><au>Salt, David E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional Activity and Role of Cation-Efflux Family Members in Ni Hyperaccumulation in Thlaspi goesingense</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2001-08-14</date><risdate>2001</risdate><volume>98</volume><issue>17</issue><spage>9995</spage><epage>10000</epage><pages>9995-10000</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The ability of Thlaspi goesingense to hyperaccumulate Ni seems to be governed in part by enhanced accumulation of Ni within leaf vacuoles. We have characterized genes from T. goesingense encoding putative vacuolar metal ion transport proteins, termed metal tolerance proteins (TgMTPs). These proteins contain all of the features of cation-efflux family members, and evidence indicates they are derived from a single genomic sequence (TgMTP1) that gives rise to an unspliced (TgMTP1t1) and a spliced (TgMTP1t2) transcript. Heterologous expression of these transcripts in yeast lacking the TgMTP1 orthologues COT1 and ZRC1 complements the metal sensitivity of these yeast strains, suggesting that TgMTP1s are able to transport metal ions into the yeast vacuole in a manner similar to COT1 and ZRC1. The unspliced and spliced TgMTP1 variants differ within a histidine-rich putative metal-binding domain, and these sequence differences are reflected as alterations in the metal specificities of these metal ion transporters. When expressed in yeast, TgMTP1t1 confers the highest level of tolerance to Cd, Co, and Zn, whereas TgMTP1t2 confers the highest tolerance to Ni. TgMTP1 transcripts are highly expressed in T. goesingense compared with orthologues in the nonaccumulators Arabidopsis thaliana, Thlaspi arvense, and Brassica juncea. We propose that the high-level expression of TgMTP1 in T. goesingense accounts for the enhanced ability of this hyperaccumulator to accumulate metal ions within shoot vacuoles.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>11481436</pmid><doi>10.1073/pnas.171039798</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2001-08, Vol.98 (17), p.9995-10000
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmed_primary_11481436
source JSTOR Archival Journals and Primary Sources Collection; PubMed Central
subjects Amino Acid Sequence
Arabidopsis - metabolism
Arabidopsis thaliana
Biological Sciences
Brassica - metabolism
Brassica juncea
Cadmium - metabolism
Cadmium - toxicity
Carrier Proteins - genetics
Carrier Proteins - metabolism
Cation Transport Proteins
Cations - metabolism
Cobalt - metabolism
Cobalt - toxicity
Complementary DNA
COT1 protein
DNA
Drug Resistance - genetics
Drug Resistance, Microbial - genetics
Flowers & plants
Fungal Proteins - genetics
Fungal Proteins - metabolism
Genes
Genomics
Hyperaccumulators
Ion Transport
Ions
Membrane Transport Proteins
Metal ions
metal tolerance protein
Metals
Molecular Sequence Data
Nickel - metabolism
Nickel - toxicity
Plant Proteins - genetics
Plant Proteins - metabolism
Plant Shoots - metabolism
Plant Shoots - ultrastructure
Plants - genetics
Plants - metabolism
Polymerase Chain Reaction
Protein Isoforms - metabolism
Protein Structure, Tertiary
Proteins
Recombinant Fusion Proteins - metabolism
RNA
RNA Splicing
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae - ultrastructure
Saccharomyces cerevisiae Proteins
Sequence Alignment
Sequence Homology, Amino Acid
Substrate Specificity
TgMTP1t1 gene
TgMTP1t2 gene
Thlaspi arvense
Thlaspi goesingense
Vacuoles
Vacuoles - metabolism
Yeasts
Zinc - metabolism
Zinc - toxicity
ZRC1 protein
title Functional Activity and Role of Cation-Efflux Family Members in Ni Hyperaccumulation in Thlaspi goesingense
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A40%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20Activity%20and%20Role%20of%20Cation-Efflux%20Family%20Members%20in%20Ni%20Hyperaccumulation%20in%20Thlaspi%20goesingense&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Persans,%20Michael%20W.&rft.date=2001-08-14&rft.volume=98&rft.issue=17&rft.spage=9995&rft.epage=10000&rft.pages=9995-10000&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.171039798&rft_dat=%3Cjstor_pubme%3E3056466%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c518t-f1a6ce1c7912ed5f85cfc7b614b4f45529f6c91c9902da4fc0624e81d9ea4b233%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=201373993&rft_id=info:pmid/11481436&rft_jstor_id=3056466&rfr_iscdi=true