Loading…

Structural adaptation of microvascular networks: functional roles of adaptive responses

1  Department of Physiology, Freie Universität Berlin, D-14195 Berlin; 2  Deutsches Herzzentrum Berlin, D-13353 Berlin, Germany; and 3  Department of Physiology, University of Arizona, Tucson, Arizona 85724 Terminal vascular beds continually adapt to changing demands. A theoretical model is used to...

Full description

Saved in:
Bibliographic Details
Published in:American journal of physiology. Heart and circulatory physiology 2001-09, Vol.281 (3), p.H1015-H1025
Main Authors: Pries, A. R, Reglin, B, Secomb, T. W
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c522t-d409472fe7f2b916bd10f5cd89b7fb5caa1563591c9c15cd8db34556ac5384e83
cites cdi_FETCH-LOGICAL-c522t-d409472fe7f2b916bd10f5cd89b7fb5caa1563591c9c15cd8db34556ac5384e83
container_end_page H1025
container_issue 3
container_start_page H1015
container_title American journal of physiology. Heart and circulatory physiology
container_volume 281
creator Pries, A. R
Reglin, B
Secomb, T. W
description 1  Department of Physiology, Freie Universität Berlin, D-14195 Berlin; 2  Deutsches Herzzentrum Berlin, D-13353 Berlin, Germany; and 3  Department of Physiology, University of Arizona, Tucson, Arizona 85724 Terminal vascular beds continually adapt to changing demands. A theoretical model is used to simulate structural diameter changes in response to hemodynamic and metabolic stimuli in microvascular networks. Increased wall shear stress and decreased intravascular pressure are assumed to stimulate diameter increase. Intravascular partial pressure of oxygen (P O 2 ) is estimated for each segment. Decreasing P O 2 is assumed to generate a metabolic stimulus for diameter increase, which acts locally, upstream via conduction along vessel walls, and downstream via metabolite convection. By adjusting the sensitivities to these stimuli, good agreement is achieved between predicted network characteristics and experimental data from microvascular networks in rat mesentery. Reduced pressure sensitivity leads to increased capillary pressure with reduced viscous energy dissipation and little change in tissue oxygenation. Dissipation decreases strongly with decreased metabolic response. Below a threshold level of metabolic response flow shifts to shorter pathways through the network, and oxygen supply efficiency decreases sharply. In summary, the distribution of vessel diameters generated by the simulated adaptive process allows the network to meet the functional demands of tissue while avoiding excessive viscous energy dissipation. shear stress; pressure; conducted response; oxygen transport; mathematical modeling
doi_str_mv 10.1152/ajpheart.2001.281.3.h1015
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_11514266</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71103046</sourcerecordid><originalsourceid>FETCH-LOGICAL-c522t-d409472fe7f2b916bd10f5cd89b7fb5caa1563591c9c15cd8db34556ac5384e83</originalsourceid><addsrcrecordid>eNp1kE9P5CAYh4lxo7PqVzD14q2VtxQ61dNm4p9NTDyo8UgoBVtlSgWqzreX7oyre9gTycvz_F74IXQEOAOg-Yl4GlolXMhyjCHL55CRrAUMdAvN4n2eAiXVNpphwkjKgNBd9NP7J4wxLRnZQbsxBYqcsRl6uA1ulGF0wiSiEUMQobN9YnWy7KSzr8LL0QiX9Cq8WffsTxM99nJiouCsUX5i_5jdq0qc8oPtvfL76IcWxquDzbmH7i_O7xZX6fXN5e_Fr-tUxneGtClwVZS5VqXO6wpY3QDWVDbzqi51TaUQQBmhFchKwjRvalJQyoSkZF6oOdlDx-vcwdmXUfnAl52XyhjRKzt6XgJgggsWwWoNxl9575Tmg-uWwq04YD61yj9b5VOrPLbKCb-aWo3u4WbJWC9V82VuaozAyRpou8f2rXOKD-3Kd9bYx9W33H8iz_5vXIzG3Kn38Ff9ZvKh0eQDZV-eoQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71103046</pqid></control><display><type>article</type><title>Structural adaptation of microvascular networks: functional roles of adaptive responses</title><source>American Physiological Society Free</source><creator>Pries, A. R ; Reglin, B ; Secomb, T. W</creator><creatorcontrib>Pries, A. R ; Reglin, B ; Secomb, T. W</creatorcontrib><description>1  Department of Physiology, Freie Universität Berlin, D-14195 Berlin; 2  Deutsches Herzzentrum Berlin, D-13353 Berlin, Germany; and 3  Department of Physiology, University of Arizona, Tucson, Arizona 85724 Terminal vascular beds continually adapt to changing demands. A theoretical model is used to simulate structural diameter changes in response to hemodynamic and metabolic stimuli in microvascular networks. Increased wall shear stress and decreased intravascular pressure are assumed to stimulate diameter increase. Intravascular partial pressure of oxygen (P O 2 ) is estimated for each segment. Decreasing P O 2 is assumed to generate a metabolic stimulus for diameter increase, which acts locally, upstream via conduction along vessel walls, and downstream via metabolite convection. By adjusting the sensitivities to these stimuli, good agreement is achieved between predicted network characteristics and experimental data from microvascular networks in rat mesentery. Reduced pressure sensitivity leads to increased capillary pressure with reduced viscous energy dissipation and little change in tissue oxygenation. Dissipation decreases strongly with decreased metabolic response. Below a threshold level of metabolic response flow shifts to shorter pathways through the network, and oxygen supply efficiency decreases sharply. In summary, the distribution of vessel diameters generated by the simulated adaptive process allows the network to meet the functional demands of tissue while avoiding excessive viscous energy dissipation. shear stress; pressure; conducted response; oxygen transport; mathematical modeling</description><identifier>ISSN: 0363-6135</identifier><identifier>EISSN: 1522-1539</identifier><identifier>DOI: 10.1152/ajpheart.2001.281.3.h1015</identifier><identifier>PMID: 11514266</identifier><language>eng</language><publisher>United States</publisher><subject>Adaptation, Physiological - physiology ; Animals ; Blood Flow Velocity - physiology ; Blood Pressure - physiology ; Blood Viscosity - physiology ; Computer Simulation ; Hemodynamics - physiology ; Male ; Mesentery - blood supply ; Microcirculation - physiology ; Models, Cardiovascular ; Oxygen - metabolism ; Rats ; Rats, Wistar ; Regional Blood Flow - physiology ; Signal Transduction - physiology ; Space life sciences ; Stress, Mechanical ; Vascular Patency - physiology</subject><ispartof>American journal of physiology. Heart and circulatory physiology, 2001-09, Vol.281 (3), p.H1015-H1025</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c522t-d409472fe7f2b916bd10f5cd89b7fb5caa1563591c9c15cd8db34556ac5384e83</citedby><cites>FETCH-LOGICAL-c522t-d409472fe7f2b916bd10f5cd89b7fb5caa1563591c9c15cd8db34556ac5384e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11514266$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pries, A. R</creatorcontrib><creatorcontrib>Reglin, B</creatorcontrib><creatorcontrib>Secomb, T. W</creatorcontrib><title>Structural adaptation of microvascular networks: functional roles of adaptive responses</title><title>American journal of physiology. Heart and circulatory physiology</title><addtitle>Am J Physiol Heart Circ Physiol</addtitle><description>1  Department of Physiology, Freie Universität Berlin, D-14195 Berlin; 2  Deutsches Herzzentrum Berlin, D-13353 Berlin, Germany; and 3  Department of Physiology, University of Arizona, Tucson, Arizona 85724 Terminal vascular beds continually adapt to changing demands. A theoretical model is used to simulate structural diameter changes in response to hemodynamic and metabolic stimuli in microvascular networks. Increased wall shear stress and decreased intravascular pressure are assumed to stimulate diameter increase. Intravascular partial pressure of oxygen (P O 2 ) is estimated for each segment. Decreasing P O 2 is assumed to generate a metabolic stimulus for diameter increase, which acts locally, upstream via conduction along vessel walls, and downstream via metabolite convection. By adjusting the sensitivities to these stimuli, good agreement is achieved between predicted network characteristics and experimental data from microvascular networks in rat mesentery. Reduced pressure sensitivity leads to increased capillary pressure with reduced viscous energy dissipation and little change in tissue oxygenation. Dissipation decreases strongly with decreased metabolic response. Below a threshold level of metabolic response flow shifts to shorter pathways through the network, and oxygen supply efficiency decreases sharply. In summary, the distribution of vessel diameters generated by the simulated adaptive process allows the network to meet the functional demands of tissue while avoiding excessive viscous energy dissipation. shear stress; pressure; conducted response; oxygen transport; mathematical modeling</description><subject>Adaptation, Physiological - physiology</subject><subject>Animals</subject><subject>Blood Flow Velocity - physiology</subject><subject>Blood Pressure - physiology</subject><subject>Blood Viscosity - physiology</subject><subject>Computer Simulation</subject><subject>Hemodynamics - physiology</subject><subject>Male</subject><subject>Mesentery - blood supply</subject><subject>Microcirculation - physiology</subject><subject>Models, Cardiovascular</subject><subject>Oxygen - metabolism</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Regional Blood Flow - physiology</subject><subject>Signal Transduction - physiology</subject><subject>Space life sciences</subject><subject>Stress, Mechanical</subject><subject>Vascular Patency - physiology</subject><issn>0363-6135</issn><issn>1522-1539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNp1kE9P5CAYh4lxo7PqVzD14q2VtxQ61dNm4p9NTDyo8UgoBVtlSgWqzreX7oyre9gTycvz_F74IXQEOAOg-Yl4GlolXMhyjCHL55CRrAUMdAvN4n2eAiXVNpphwkjKgNBd9NP7J4wxLRnZQbsxBYqcsRl6uA1ulGF0wiSiEUMQobN9YnWy7KSzr8LL0QiX9Cq8WffsTxM99nJiouCsUX5i_5jdq0qc8oPtvfL76IcWxquDzbmH7i_O7xZX6fXN5e_Fr-tUxneGtClwVZS5VqXO6wpY3QDWVDbzqi51TaUQQBmhFchKwjRvalJQyoSkZF6oOdlDx-vcwdmXUfnAl52XyhjRKzt6XgJgggsWwWoNxl9575Tmg-uWwq04YD61yj9b5VOrPLbKCb-aWo3u4WbJWC9V82VuaozAyRpou8f2rXOKD-3Kd9bYx9W33H8iz_5vXIzG3Kn38Ff9ZvKh0eQDZV-eoQ</recordid><startdate>20010901</startdate><enddate>20010901</enddate><creator>Pries, A. R</creator><creator>Reglin, B</creator><creator>Secomb, T. W</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20010901</creationdate><title>Structural adaptation of microvascular networks: functional roles of adaptive responses</title><author>Pries, A. R ; Reglin, B ; Secomb, T. W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c522t-d409472fe7f2b916bd10f5cd89b7fb5caa1563591c9c15cd8db34556ac5384e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Adaptation, Physiological - physiology</topic><topic>Animals</topic><topic>Blood Flow Velocity - physiology</topic><topic>Blood Pressure - physiology</topic><topic>Blood Viscosity - physiology</topic><topic>Computer Simulation</topic><topic>Hemodynamics - physiology</topic><topic>Male</topic><topic>Mesentery - blood supply</topic><topic>Microcirculation - physiology</topic><topic>Models, Cardiovascular</topic><topic>Oxygen - metabolism</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Regional Blood Flow - physiology</topic><topic>Signal Transduction - physiology</topic><topic>Space life sciences</topic><topic>Stress, Mechanical</topic><topic>Vascular Patency - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pries, A. R</creatorcontrib><creatorcontrib>Reglin, B</creatorcontrib><creatorcontrib>Secomb, T. W</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>American journal of physiology. Heart and circulatory physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pries, A. R</au><au>Reglin, B</au><au>Secomb, T. W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural adaptation of microvascular networks: functional roles of adaptive responses</atitle><jtitle>American journal of physiology. Heart and circulatory physiology</jtitle><addtitle>Am J Physiol Heart Circ Physiol</addtitle><date>2001-09-01</date><risdate>2001</risdate><volume>281</volume><issue>3</issue><spage>H1015</spage><epage>H1025</epage><pages>H1015-H1025</pages><issn>0363-6135</issn><eissn>1522-1539</eissn><abstract>1  Department of Physiology, Freie Universität Berlin, D-14195 Berlin; 2  Deutsches Herzzentrum Berlin, D-13353 Berlin, Germany; and 3  Department of Physiology, University of Arizona, Tucson, Arizona 85724 Terminal vascular beds continually adapt to changing demands. A theoretical model is used to simulate structural diameter changes in response to hemodynamic and metabolic stimuli in microvascular networks. Increased wall shear stress and decreased intravascular pressure are assumed to stimulate diameter increase. Intravascular partial pressure of oxygen (P O 2 ) is estimated for each segment. Decreasing P O 2 is assumed to generate a metabolic stimulus for diameter increase, which acts locally, upstream via conduction along vessel walls, and downstream via metabolite convection. By adjusting the sensitivities to these stimuli, good agreement is achieved between predicted network characteristics and experimental data from microvascular networks in rat mesentery. Reduced pressure sensitivity leads to increased capillary pressure with reduced viscous energy dissipation and little change in tissue oxygenation. Dissipation decreases strongly with decreased metabolic response. Below a threshold level of metabolic response flow shifts to shorter pathways through the network, and oxygen supply efficiency decreases sharply. In summary, the distribution of vessel diameters generated by the simulated adaptive process allows the network to meet the functional demands of tissue while avoiding excessive viscous energy dissipation. shear stress; pressure; conducted response; oxygen transport; mathematical modeling</abstract><cop>United States</cop><pmid>11514266</pmid><doi>10.1152/ajpheart.2001.281.3.h1015</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0363-6135
ispartof American journal of physiology. Heart and circulatory physiology, 2001-09, Vol.281 (3), p.H1015-H1025
issn 0363-6135
1522-1539
language eng
recordid cdi_pubmed_primary_11514266
source American Physiological Society Free
subjects Adaptation, Physiological - physiology
Animals
Blood Flow Velocity - physiology
Blood Pressure - physiology
Blood Viscosity - physiology
Computer Simulation
Hemodynamics - physiology
Male
Mesentery - blood supply
Microcirculation - physiology
Models, Cardiovascular
Oxygen - metabolism
Rats
Rats, Wistar
Regional Blood Flow - physiology
Signal Transduction - physiology
Space life sciences
Stress, Mechanical
Vascular Patency - physiology
title Structural adaptation of microvascular networks: functional roles of adaptive responses
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T01%3A37%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20adaptation%20of%20microvascular%20networks:%20functional%20roles%20of%20adaptive%20responses&rft.jtitle=American%20journal%20of%20physiology.%20Heart%20and%20circulatory%20physiology&rft.au=Pries,%20A.%20R&rft.date=2001-09-01&rft.volume=281&rft.issue=3&rft.spage=H1015&rft.epage=H1025&rft.pages=H1015-H1025&rft.issn=0363-6135&rft.eissn=1522-1539&rft_id=info:doi/10.1152/ajpheart.2001.281.3.h1015&rft_dat=%3Cproquest_pubme%3E71103046%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c522t-d409472fe7f2b916bd10f5cd89b7fb5caa1563591c9c15cd8db34556ac5384e83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=71103046&rft_id=info:pmid/11514266&rfr_iscdi=true