Loading…
Identification of an axonal determinant in the C-terminus of the sodium channel Na(v)1.2
To obtain a better understanding of how hippocampal neurons selectively target proteins to axons, we assessed whether any of the large cytoplasmic regions of neuronal sodium channel Na(v)1.2 contain sufficient information for axonal compartmentalization. We show that addition of the cytoplasmic C-te...
Saved in:
Published in: | The EMBO journal 2001-11, Vol.20 (21), p.5950 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | To obtain a better understanding of how hippocampal neurons selectively target proteins to axons, we assessed whether any of the large cytoplasmic regions of neuronal sodium channel Na(v)1.2 contain sufficient information for axonal compartmentalization. We show that addition of the cytoplasmic C-terminal region of Na(v)1.2 restricted the distribution of a dendritic-axonal reporter protein to axons. The analysis of mutants revealed that a critical segment of nine amino acids encompassing a di-leucine-based motif mediates axonal compartmentalization of chimera. In addition, the Na(v)1.2 C-terminus is recognized by the clathrin endocytic pathway both in non-neuronal cells and the somatodendritic domain of hippocampal neurons. The mutation of the di-leucine motif located within the nine amino acid sequence to alanines resulted in the loss of chimera compartmentalization in axons and of internalization. These data suggest that selective elimination by endocytosis in dendrites may account for the compartmentalized distribution of some proteins in axons. |
---|---|
ISSN: | 0261-4189 |
DOI: | 10.1093/emboj/20.21.5950 |