Loading…

EEG SOURCE LOCALIZATION: A COMPARATIVE STUDY OF CLASSICAL AND NEURAL NETWORK METHODS

We address the problem of estimating biopotential sources within the brain, based on EEG signals observed on the scalp. This problem, known as the inverse problem of electrophysiology, has no closed-form solution, and requires iterative techniques such as the Levenberg – Marquardt (LM) algorithm. Co...

Full description

Saved in:
Bibliographic Details
Published in:International journal of neural systems 2001-08, Vol.11 (4), p.349-359
Main Authors: ABEYRATNE, UDANTHA R., ZHANG, G., SARATCHANDRAN, P.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3483-4baa7ebc495ca23e4530d88420f3e838a9dbdf4d6600dd9e25bd7f18bb1b2cd63
cites
container_end_page 359
container_issue 4
container_start_page 349
container_title International journal of neural systems
container_volume 11
creator ABEYRATNE, UDANTHA R.
ZHANG, G.
SARATCHANDRAN, P.
description We address the problem of estimating biopotential sources within the brain, based on EEG signals observed on the scalp. This problem, known as the inverse problem of electrophysiology, has no closed-form solution, and requires iterative techniques such as the Levenberg – Marquardt (LM) algorithm. Considering the nonlinear nature of the inverse problem, and the low signal to noise ratio inherent in EEG signals, a backpropagation neural network (BPN) has been recently proposed as a solution. The technique has not been properly compared with classical techniques such as the LM method, or with more recent neural network techniques such as the Radial Basis Function (RBF) network. In this paper, we provide improved strategies based on BPN and consider RBF networks in solving the inverse problem. We compare the performances of BPN, RBF and a hybrid technique with that of the classical LM method.
doi_str_mv 10.1142/S0129065701000813
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_11706410</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72276466</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3483-4baa7ebc495ca23e4530d88420f3e838a9dbdf4d6600dd9e25bd7f18bb1b2cd63</originalsourceid><addsrcrecordid>eNplkMtOg0AUhidGY2v1AdyYWblDz1y4uSOUXiIFw0WjGwLMkGBoqUwb49sLaaOLrs45Od__Lz6Ebgk8EMLpYwyE2mDoJhAAsAg7Q2Ni2kwzuEHP0Xh4a8N_hK6U-gQg3OTWJRoRYoLBCYxR4nlzHIdp5HrYD13HX344yTIMnrCD3XD14kT9-erhOEmn7zicYdd34njZg9gJpjjw0qhfAy95C6NnvPKSRTiNr9FFlTdK3hznBKUzL3EXmh_Oh6hWMm4xjRd5bsqi5LZe5pRJrjMQlsUpVExazMptUYiKC8MAEMKWVC-EWRGrKEhBS2GwCbo_9G679msv1S5b16qUTZNvZLtXmUmp2asYQHIAy65VqpNVtu3qdd79ZASyQWV2orLP3B3L98Vaiv_E0V0PwAH4brtGqLKWm11d1eUfedr5C3Ecdg4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72276466</pqid></control><display><type>article</type><title>EEG SOURCE LOCALIZATION: A COMPARATIVE STUDY OF CLASSICAL AND NEURAL NETWORK METHODS</title><source>TRIAL: World Scientific Journals</source><creator>ABEYRATNE, UDANTHA R. ; ZHANG, G. ; SARATCHANDRAN, P.</creator><creatorcontrib>ABEYRATNE, UDANTHA R. ; ZHANG, G. ; SARATCHANDRAN, P.</creatorcontrib><description>We address the problem of estimating biopotential sources within the brain, based on EEG signals observed on the scalp. This problem, known as the inverse problem of electrophysiology, has no closed-form solution, and requires iterative techniques such as the Levenberg – Marquardt (LM) algorithm. Considering the nonlinear nature of the inverse problem, and the low signal to noise ratio inherent in EEG signals, a backpropagation neural network (BPN) has been recently proposed as a solution. The technique has not been properly compared with classical techniques such as the LM method, or with more recent neural network techniques such as the Radial Basis Function (RBF) network. In this paper, we provide improved strategies based on BPN and consider RBF networks in solving the inverse problem. We compare the performances of BPN, RBF and a hybrid technique with that of the classical LM method.</description><identifier>ISSN: 0129-0657</identifier><identifier>EISSN: 1793-6462</identifier><identifier>DOI: 10.1142/S0129065701000813</identifier><identifier>PMID: 11706410</identifier><language>eng</language><publisher>Singapore: World Scientific Publishing Company</publisher><subject>Brain - physiology ; Brain - physiopathology ; Electroencephalography - methods ; Humans ; Neural Networks (Computer)</subject><ispartof>International journal of neural systems, 2001-08, Vol.11 (4), p.349-359</ispartof><rights>2001, World Scientific Publishing Company</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3483-4baa7ebc495ca23e4530d88420f3e838a9dbdf4d6600dd9e25bd7f18bb1b2cd63</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.worldscientific.com/doi/reader/10.1142/S0129065701000813$$EPDF$$P50$$Gworldscientific$$H</linktopdf><link.rule.ids>314,780,784,3211,4870,27922,27923,55585</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11706410$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>ABEYRATNE, UDANTHA R.</creatorcontrib><creatorcontrib>ZHANG, G.</creatorcontrib><creatorcontrib>SARATCHANDRAN, P.</creatorcontrib><title>EEG SOURCE LOCALIZATION: A COMPARATIVE STUDY OF CLASSICAL AND NEURAL NETWORK METHODS</title><title>International journal of neural systems</title><addtitle>Int J Neural Syst</addtitle><description>We address the problem of estimating biopotential sources within the brain, based on EEG signals observed on the scalp. This problem, known as the inverse problem of electrophysiology, has no closed-form solution, and requires iterative techniques such as the Levenberg – Marquardt (LM) algorithm. Considering the nonlinear nature of the inverse problem, and the low signal to noise ratio inherent in EEG signals, a backpropagation neural network (BPN) has been recently proposed as a solution. The technique has not been properly compared with classical techniques such as the LM method, or with more recent neural network techniques such as the Radial Basis Function (RBF) network. In this paper, we provide improved strategies based on BPN and consider RBF networks in solving the inverse problem. We compare the performances of BPN, RBF and a hybrid technique with that of the classical LM method.</description><subject>Brain - physiology</subject><subject>Brain - physiopathology</subject><subject>Electroencephalography - methods</subject><subject>Humans</subject><subject>Neural Networks (Computer)</subject><issn>0129-0657</issn><issn>1793-6462</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNplkMtOg0AUhidGY2v1AdyYWblDz1y4uSOUXiIFw0WjGwLMkGBoqUwb49sLaaOLrs45Od__Lz6Ebgk8EMLpYwyE2mDoJhAAsAg7Q2Ni2kwzuEHP0Xh4a8N_hK6U-gQg3OTWJRoRYoLBCYxR4nlzHIdp5HrYD13HX344yTIMnrCD3XD14kT9-erhOEmn7zicYdd34njZg9gJpjjw0qhfAy95C6NnvPKSRTiNr9FFlTdK3hznBKUzL3EXmh_Oh6hWMm4xjRd5bsqi5LZe5pRJrjMQlsUpVExazMptUYiKC8MAEMKWVC-EWRGrKEhBS2GwCbo_9G679msv1S5b16qUTZNvZLtXmUmp2asYQHIAy65VqpNVtu3qdd79ZASyQWV2orLP3B3L98Vaiv_E0V0PwAH4brtGqLKWm11d1eUfedr5C3Ecdg4</recordid><startdate>200108</startdate><enddate>200108</enddate><creator>ABEYRATNE, UDANTHA R.</creator><creator>ZHANG, G.</creator><creator>SARATCHANDRAN, P.</creator><general>World Scientific Publishing Company</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200108</creationdate><title>EEG SOURCE LOCALIZATION: A COMPARATIVE STUDY OF CLASSICAL AND NEURAL NETWORK METHODS</title><author>ABEYRATNE, UDANTHA R. ; ZHANG, G. ; SARATCHANDRAN, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3483-4baa7ebc495ca23e4530d88420f3e838a9dbdf4d6600dd9e25bd7f18bb1b2cd63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Brain - physiology</topic><topic>Brain - physiopathology</topic><topic>Electroencephalography - methods</topic><topic>Humans</topic><topic>Neural Networks (Computer)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ABEYRATNE, UDANTHA R.</creatorcontrib><creatorcontrib>ZHANG, G.</creatorcontrib><creatorcontrib>SARATCHANDRAN, P.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of neural systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ABEYRATNE, UDANTHA R.</au><au>ZHANG, G.</au><au>SARATCHANDRAN, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EEG SOURCE LOCALIZATION: A COMPARATIVE STUDY OF CLASSICAL AND NEURAL NETWORK METHODS</atitle><jtitle>International journal of neural systems</jtitle><addtitle>Int J Neural Syst</addtitle><date>2001-08</date><risdate>2001</risdate><volume>11</volume><issue>4</issue><spage>349</spage><epage>359</epage><pages>349-359</pages><issn>0129-0657</issn><eissn>1793-6462</eissn><abstract>We address the problem of estimating biopotential sources within the brain, based on EEG signals observed on the scalp. This problem, known as the inverse problem of electrophysiology, has no closed-form solution, and requires iterative techniques such as the Levenberg – Marquardt (LM) algorithm. Considering the nonlinear nature of the inverse problem, and the low signal to noise ratio inherent in EEG signals, a backpropagation neural network (BPN) has been recently proposed as a solution. The technique has not been properly compared with classical techniques such as the LM method, or with more recent neural network techniques such as the Radial Basis Function (RBF) network. In this paper, we provide improved strategies based on BPN and consider RBF networks in solving the inverse problem. We compare the performances of BPN, RBF and a hybrid technique with that of the classical LM method.</abstract><cop>Singapore</cop><pub>World Scientific Publishing Company</pub><pmid>11706410</pmid><doi>10.1142/S0129065701000813</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0129-0657
ispartof International journal of neural systems, 2001-08, Vol.11 (4), p.349-359
issn 0129-0657
1793-6462
language eng
recordid cdi_pubmed_primary_11706410
source TRIAL: World Scientific Journals
subjects Brain - physiology
Brain - physiopathology
Electroencephalography - methods
Humans
Neural Networks (Computer)
title EEG SOURCE LOCALIZATION: A COMPARATIVE STUDY OF CLASSICAL AND NEURAL NETWORK METHODS
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A25%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EEG%20SOURCE%20LOCALIZATION:%20A%20COMPARATIVE%20STUDY%20OF%20CLASSICAL%20AND%20NEURAL%20NETWORK%20METHODS&rft.jtitle=International%20journal%20of%20neural%20systems&rft.au=ABEYRATNE,%20UDANTHA%20R.&rft.date=2001-08&rft.volume=11&rft.issue=4&rft.spage=349&rft.epage=359&rft.pages=349-359&rft.issn=0129-0657&rft.eissn=1793-6462&rft_id=info:doi/10.1142/S0129065701000813&rft_dat=%3Cproquest_pubme%3E72276466%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3483-4baa7ebc495ca23e4530d88420f3e838a9dbdf4d6600dd9e25bd7f18bb1b2cd63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=72276466&rft_id=info:pmid/11706410&rfr_iscdi=true