Loading…

MASH-1/RET pathway involvement in development of brain stem control of respiratory frequency in newborn mice

1 Laboratoire de Neurologie et Physiologie du Développement, Institut National de la Santé et de la Recherche Médicale E9935 2 Service de Pédiatrie Réanimation, Hôpital Robert Debré 3 Service de Physiologie, Hôpital Robert Debré, 75019 Paris, France Respiratory abnormalities have been described in M...

Full description

Saved in:
Bibliographic Details
Published in:Physiological genomics 2001-12, Vol.7 (2), p.149-157
Main Authors: DAUGER, STEPHANE, GUIMIOT, FABIEN, RENOLLEAU, SYLVAIN, LEVACHER, BEATRICE, BODA, BERNADETTE, MAS, CHRISTOPHE, NEPOTE, VIRGINIE, SIMONNEAU, MICHEL, GAULTIER, CLAUDE, GALLEGO, JORGE
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c413t-afdb3d6efccb1988af2a2aa10a463be6ddd79f56c817ccfeeea4319c975dd2f83
cites cdi_FETCH-LOGICAL-c413t-afdb3d6efccb1988af2a2aa10a463be6ddd79f56c817ccfeeea4319c975dd2f83
container_end_page 157
container_issue 2
container_start_page 149
container_title Physiological genomics
container_volume 7
creator DAUGER, STEPHANE
GUIMIOT, FABIEN
RENOLLEAU, SYLVAIN
LEVACHER, BEATRICE
BODA, BERNADETTE
MAS, CHRISTOPHE
NEPOTE, VIRGINIE
SIMONNEAU, MICHEL
GAULTIER, CLAUDE
GALLEGO, JORGE
description 1 Laboratoire de Neurologie et Physiologie du Développement, Institut National de la Santé et de la Recherche Médicale E9935 2 Service de Pédiatrie Réanimation, Hôpital Robert Debré 3 Service de Physiologie, Hôpital Robert Debré, 75019 Paris, France Respiratory abnormalities have been described in MASH-1 (mammalian achaete-scute homologous gene) and c-RET ("rearranged during transfection") mutant newborn mice. However, the neural mechanisms underlying these abnormalities have not been studied. We tested the hypothesis that the MASH-1 mutation may impair c-RET expression in brain stem neurons involved in the control of breathing. To do this, we analyzed brain stem c-RET expression and respiratory phenotype in MASH-1 +/+ wild-type, MASH-1 +/- heterozygous, and MASH-1 -/- knock-out newborn mice during the first 2 h of life. In MASH-1 -/- newborns, c-RET gene expression was absent in the noradrenergic nuclei (A2, A5, A6, A7) that contribute to modulate respiratory frequency and in scattered cells of the rostral ventrolateral medulla. The c-RET transcript levels measured by quantitative RT-PCR were lower in MASH-1 -/- and MASH-1 +/- than in MASH-1 +/+ brain stems ( P = 0.001 and P = 0.003, respectively). Breath durations were shorter in MASH-1 -/- and MASH-1 +/- than in MASH-1 +/+ mice ( P = 0.022) and were weakly correlated with c-RET transcript levels ( P = 0.032). Taken together, these results provide evidence that MASH-1 is upstream of c-RET in noradrenergic brain stem neurons important for respiratory rhythm modulation. breathing; quantitative reverse transcription-polymerase chain reaction; in situ hybridization; plethysmography
doi_str_mv 10.1152/physiolgenomics.00056.2001
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_11773601</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72381849</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-afdb3d6efccb1988af2a2aa10a463be6ddd79f56c817ccfeeea4319c975dd2f83</originalsourceid><addsrcrecordid>eNp1kFFr2zAUhcXYaLuuf2GYPezNqa5kW_YeBqW066Bj0GbPQpauEg_Z8iQnmf_9lCZjENiTri7nfPdwCPkAdAFQsutxPcfOuxUOvu90XFBKy2rBKIVX5AJKDjljlXidZtoUec0LOCdvY_yZBIWoyzNyDiAEryhcEPft5vkhh-unu2U2qmm9U3PWDVvvttjjMKU5M7hF58eXr7dZG1Raxgn7TPthCt7ttwHj2AU1-TBnNuCvDQ56T8oG3LU-DFlKiu_IG6tcxKvje0l-3N8tbx_yx-9fvt7ePOa6AD7lypqWmwqt1i00da0sU0wpoKqoeIuVMUY0tqx0DUJri4iq4NDoRpTGMFvzS_LxwB2DT0niJPsuanRODeg3UQrGa6iLJgk_HYQ6-BgDWjmGrldhlkDlvmt50rV86Vruu07m98crm7ZH8896LDcJPh8E62613nUB_9L8apb3G-eW-Hs6vSAkk1A0cjQ2Adj_AafJjkb-BzVmrjQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72381849</pqid></control><display><type>article</type><title>MASH-1/RET pathway involvement in development of brain stem control of respiratory frequency in newborn mice</title><source>American Physiological Society Journals</source><source>American Physiological Society:Jisc Collections:American Physiological Society Journals ‘Read Publish &amp; Join’ Agreement:2023-2024 (Reading list)</source><creator>DAUGER, STEPHANE ; GUIMIOT, FABIEN ; RENOLLEAU, SYLVAIN ; LEVACHER, BEATRICE ; BODA, BERNADETTE ; MAS, CHRISTOPHE ; NEPOTE, VIRGINIE ; SIMONNEAU, MICHEL ; GAULTIER, CLAUDE ; GALLEGO, JORGE</creator><creatorcontrib>DAUGER, STEPHANE ; GUIMIOT, FABIEN ; RENOLLEAU, SYLVAIN ; LEVACHER, BEATRICE ; BODA, BERNADETTE ; MAS, CHRISTOPHE ; NEPOTE, VIRGINIE ; SIMONNEAU, MICHEL ; GAULTIER, CLAUDE ; GALLEGO, JORGE</creatorcontrib><description>1 Laboratoire de Neurologie et Physiologie du Développement, Institut National de la Santé et de la Recherche Médicale E9935 2 Service de Pédiatrie Réanimation, Hôpital Robert Debré 3 Service de Physiologie, Hôpital Robert Debré, 75019 Paris, France Respiratory abnormalities have been described in MASH-1 (mammalian achaete-scute homologous gene) and c-RET ("rearranged during transfection") mutant newborn mice. However, the neural mechanisms underlying these abnormalities have not been studied. We tested the hypothesis that the MASH-1 mutation may impair c-RET expression in brain stem neurons involved in the control of breathing. To do this, we analyzed brain stem c-RET expression and respiratory phenotype in MASH-1 +/+ wild-type, MASH-1 +/- heterozygous, and MASH-1 -/- knock-out newborn mice during the first 2 h of life. In MASH-1 -/- newborns, c-RET gene expression was absent in the noradrenergic nuclei (A2, A5, A6, A7) that contribute to modulate respiratory frequency and in scattered cells of the rostral ventrolateral medulla. The c-RET transcript levels measured by quantitative RT-PCR were lower in MASH-1 -/- and MASH-1 +/- than in MASH-1 +/+ brain stems ( P = 0.001 and P = 0.003, respectively). Breath durations were shorter in MASH-1 -/- and MASH-1 +/- than in MASH-1 +/+ mice ( P = 0.022) and were weakly correlated with c-RET transcript levels ( P = 0.032). Taken together, these results provide evidence that MASH-1 is upstream of c-RET in noradrenergic brain stem neurons important for respiratory rhythm modulation. breathing; quantitative reverse transcription-polymerase chain reaction; in situ hybridization; plethysmography</description><identifier>ISSN: 1094-8341</identifier><identifier>EISSN: 1531-2267</identifier><identifier>DOI: 10.1152/physiolgenomics.00056.2001</identifier><identifier>PMID: 11773601</identifier><language>eng</language><publisher>United States: Am Physiological Soc</publisher><subject>Adaptation, Physiological ; Animals ; Animals, Newborn ; Basic Helix-Loop-Helix Transcription Factors ; Brain Stem - metabolism ; DNA-Binding Proteins - deficiency ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Drosophila Proteins ; Heterozygote ; Homozygote ; In Situ Hybridization ; Mice ; Mice, Knockout ; Nerve Net - physiology ; Periodicity ; Phenotype ; Plethysmography ; Proto-Oncogene Proteins - genetics ; Proto-Oncogene Proteins - metabolism ; Proto-Oncogene Proteins c-ret ; Receptor Protein-Tyrosine Kinases - genetics ; Receptor Protein-Tyrosine Kinases - metabolism ; Respiration ; Reverse Transcriptase Polymerase Chain Reaction ; RNA, Messenger - metabolism ; Signal Transduction - physiology ; Time Factors ; Transcription Factors - deficiency ; Transcription Factors - genetics ; Transcription Factors - metabolism</subject><ispartof>Physiological genomics, 2001-12, Vol.7 (2), p.149-157</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-afdb3d6efccb1988af2a2aa10a463be6ddd79f56c817ccfeeea4319c975dd2f83</citedby><cites>FETCH-LOGICAL-c413t-afdb3d6efccb1988af2a2aa10a463be6ddd79f56c817ccfeeea4319c975dd2f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11773601$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>DAUGER, STEPHANE</creatorcontrib><creatorcontrib>GUIMIOT, FABIEN</creatorcontrib><creatorcontrib>RENOLLEAU, SYLVAIN</creatorcontrib><creatorcontrib>LEVACHER, BEATRICE</creatorcontrib><creatorcontrib>BODA, BERNADETTE</creatorcontrib><creatorcontrib>MAS, CHRISTOPHE</creatorcontrib><creatorcontrib>NEPOTE, VIRGINIE</creatorcontrib><creatorcontrib>SIMONNEAU, MICHEL</creatorcontrib><creatorcontrib>GAULTIER, CLAUDE</creatorcontrib><creatorcontrib>GALLEGO, JORGE</creatorcontrib><title>MASH-1/RET pathway involvement in development of brain stem control of respiratory frequency in newborn mice</title><title>Physiological genomics</title><addtitle>Physiol Genomics</addtitle><description>1 Laboratoire de Neurologie et Physiologie du Développement, Institut National de la Santé et de la Recherche Médicale E9935 2 Service de Pédiatrie Réanimation, Hôpital Robert Debré 3 Service de Physiologie, Hôpital Robert Debré, 75019 Paris, France Respiratory abnormalities have been described in MASH-1 (mammalian achaete-scute homologous gene) and c-RET ("rearranged during transfection") mutant newborn mice. However, the neural mechanisms underlying these abnormalities have not been studied. We tested the hypothesis that the MASH-1 mutation may impair c-RET expression in brain stem neurons involved in the control of breathing. To do this, we analyzed brain stem c-RET expression and respiratory phenotype in MASH-1 +/+ wild-type, MASH-1 +/- heterozygous, and MASH-1 -/- knock-out newborn mice during the first 2 h of life. In MASH-1 -/- newborns, c-RET gene expression was absent in the noradrenergic nuclei (A2, A5, A6, A7) that contribute to modulate respiratory frequency and in scattered cells of the rostral ventrolateral medulla. The c-RET transcript levels measured by quantitative RT-PCR were lower in MASH-1 -/- and MASH-1 +/- than in MASH-1 +/+ brain stems ( P = 0.001 and P = 0.003, respectively). Breath durations were shorter in MASH-1 -/- and MASH-1 +/- than in MASH-1 +/+ mice ( P = 0.022) and were weakly correlated with c-RET transcript levels ( P = 0.032). Taken together, these results provide evidence that MASH-1 is upstream of c-RET in noradrenergic brain stem neurons important for respiratory rhythm modulation. breathing; quantitative reverse transcription-polymerase chain reaction; in situ hybridization; plethysmography</description><subject>Adaptation, Physiological</subject><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Basic Helix-Loop-Helix Transcription Factors</subject><subject>Brain Stem - metabolism</subject><subject>DNA-Binding Proteins - deficiency</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Drosophila Proteins</subject><subject>Heterozygote</subject><subject>Homozygote</subject><subject>In Situ Hybridization</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Nerve Net - physiology</subject><subject>Periodicity</subject><subject>Phenotype</subject><subject>Plethysmography</subject><subject>Proto-Oncogene Proteins - genetics</subject><subject>Proto-Oncogene Proteins - metabolism</subject><subject>Proto-Oncogene Proteins c-ret</subject><subject>Receptor Protein-Tyrosine Kinases - genetics</subject><subject>Receptor Protein-Tyrosine Kinases - metabolism</subject><subject>Respiration</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>RNA, Messenger - metabolism</subject><subject>Signal Transduction - physiology</subject><subject>Time Factors</subject><subject>Transcription Factors - deficiency</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><issn>1094-8341</issn><issn>1531-2267</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNp1kFFr2zAUhcXYaLuuf2GYPezNqa5kW_YeBqW066Bj0GbPQpauEg_Z8iQnmf_9lCZjENiTri7nfPdwCPkAdAFQsutxPcfOuxUOvu90XFBKy2rBKIVX5AJKDjljlXidZtoUec0LOCdvY_yZBIWoyzNyDiAEryhcEPft5vkhh-unu2U2qmm9U3PWDVvvttjjMKU5M7hF58eXr7dZG1Raxgn7TPthCt7ttwHj2AU1-TBnNuCvDQ56T8oG3LU-DFlKiu_IG6tcxKvje0l-3N8tbx_yx-9fvt7ePOa6AD7lypqWmwqt1i00da0sU0wpoKqoeIuVMUY0tqx0DUJri4iq4NDoRpTGMFvzS_LxwB2DT0niJPsuanRODeg3UQrGa6iLJgk_HYQ6-BgDWjmGrldhlkDlvmt50rV86Vruu07m98crm7ZH8896LDcJPh8E62613nUB_9L8apb3G-eW-Hs6vSAkk1A0cjQ2Adj_AafJjkb-BzVmrjQ</recordid><startdate>20011221</startdate><enddate>20011221</enddate><creator>DAUGER, STEPHANE</creator><creator>GUIMIOT, FABIEN</creator><creator>RENOLLEAU, SYLVAIN</creator><creator>LEVACHER, BEATRICE</creator><creator>BODA, BERNADETTE</creator><creator>MAS, CHRISTOPHE</creator><creator>NEPOTE, VIRGINIE</creator><creator>SIMONNEAU, MICHEL</creator><creator>GAULTIER, CLAUDE</creator><creator>GALLEGO, JORGE</creator><general>Am Physiological Soc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20011221</creationdate><title>MASH-1/RET pathway involvement in development of brain stem control of respiratory frequency in newborn mice</title><author>DAUGER, STEPHANE ; GUIMIOT, FABIEN ; RENOLLEAU, SYLVAIN ; LEVACHER, BEATRICE ; BODA, BERNADETTE ; MAS, CHRISTOPHE ; NEPOTE, VIRGINIE ; SIMONNEAU, MICHEL ; GAULTIER, CLAUDE ; GALLEGO, JORGE</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-afdb3d6efccb1988af2a2aa10a463be6ddd79f56c817ccfeeea4319c975dd2f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Adaptation, Physiological</topic><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Basic Helix-Loop-Helix Transcription Factors</topic><topic>Brain Stem - metabolism</topic><topic>DNA-Binding Proteins - deficiency</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Drosophila Proteins</topic><topic>Heterozygote</topic><topic>Homozygote</topic><topic>In Situ Hybridization</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Nerve Net - physiology</topic><topic>Periodicity</topic><topic>Phenotype</topic><topic>Plethysmography</topic><topic>Proto-Oncogene Proteins - genetics</topic><topic>Proto-Oncogene Proteins - metabolism</topic><topic>Proto-Oncogene Proteins c-ret</topic><topic>Receptor Protein-Tyrosine Kinases - genetics</topic><topic>Receptor Protein-Tyrosine Kinases - metabolism</topic><topic>Respiration</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>RNA, Messenger - metabolism</topic><topic>Signal Transduction - physiology</topic><topic>Time Factors</topic><topic>Transcription Factors - deficiency</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DAUGER, STEPHANE</creatorcontrib><creatorcontrib>GUIMIOT, FABIEN</creatorcontrib><creatorcontrib>RENOLLEAU, SYLVAIN</creatorcontrib><creatorcontrib>LEVACHER, BEATRICE</creatorcontrib><creatorcontrib>BODA, BERNADETTE</creatorcontrib><creatorcontrib>MAS, CHRISTOPHE</creatorcontrib><creatorcontrib>NEPOTE, VIRGINIE</creatorcontrib><creatorcontrib>SIMONNEAU, MICHEL</creatorcontrib><creatorcontrib>GAULTIER, CLAUDE</creatorcontrib><creatorcontrib>GALLEGO, JORGE</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physiological genomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DAUGER, STEPHANE</au><au>GUIMIOT, FABIEN</au><au>RENOLLEAU, SYLVAIN</au><au>LEVACHER, BEATRICE</au><au>BODA, BERNADETTE</au><au>MAS, CHRISTOPHE</au><au>NEPOTE, VIRGINIE</au><au>SIMONNEAU, MICHEL</au><au>GAULTIER, CLAUDE</au><au>GALLEGO, JORGE</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MASH-1/RET pathway involvement in development of brain stem control of respiratory frequency in newborn mice</atitle><jtitle>Physiological genomics</jtitle><addtitle>Physiol Genomics</addtitle><date>2001-12-21</date><risdate>2001</risdate><volume>7</volume><issue>2</issue><spage>149</spage><epage>157</epage><pages>149-157</pages><issn>1094-8341</issn><eissn>1531-2267</eissn><abstract>1 Laboratoire de Neurologie et Physiologie du Développement, Institut National de la Santé et de la Recherche Médicale E9935 2 Service de Pédiatrie Réanimation, Hôpital Robert Debré 3 Service de Physiologie, Hôpital Robert Debré, 75019 Paris, France Respiratory abnormalities have been described in MASH-1 (mammalian achaete-scute homologous gene) and c-RET ("rearranged during transfection") mutant newborn mice. However, the neural mechanisms underlying these abnormalities have not been studied. We tested the hypothesis that the MASH-1 mutation may impair c-RET expression in brain stem neurons involved in the control of breathing. To do this, we analyzed brain stem c-RET expression and respiratory phenotype in MASH-1 +/+ wild-type, MASH-1 +/- heterozygous, and MASH-1 -/- knock-out newborn mice during the first 2 h of life. In MASH-1 -/- newborns, c-RET gene expression was absent in the noradrenergic nuclei (A2, A5, A6, A7) that contribute to modulate respiratory frequency and in scattered cells of the rostral ventrolateral medulla. The c-RET transcript levels measured by quantitative RT-PCR were lower in MASH-1 -/- and MASH-1 +/- than in MASH-1 +/+ brain stems ( P = 0.001 and P = 0.003, respectively). Breath durations were shorter in MASH-1 -/- and MASH-1 +/- than in MASH-1 +/+ mice ( P = 0.022) and were weakly correlated with c-RET transcript levels ( P = 0.032). Taken together, these results provide evidence that MASH-1 is upstream of c-RET in noradrenergic brain stem neurons important for respiratory rhythm modulation. breathing; quantitative reverse transcription-polymerase chain reaction; in situ hybridization; plethysmography</abstract><cop>United States</cop><pub>Am Physiological Soc</pub><pmid>11773601</pmid><doi>10.1152/physiolgenomics.00056.2001</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1094-8341
ispartof Physiological genomics, 2001-12, Vol.7 (2), p.149-157
issn 1094-8341
1531-2267
language eng
recordid cdi_pubmed_primary_11773601
source American Physiological Society Journals; American Physiological Society:Jisc Collections:American Physiological Society Journals ‘Read Publish & Join’ Agreement:2023-2024 (Reading list)
subjects Adaptation, Physiological
Animals
Animals, Newborn
Basic Helix-Loop-Helix Transcription Factors
Brain Stem - metabolism
DNA-Binding Proteins - deficiency
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
Drosophila Proteins
Heterozygote
Homozygote
In Situ Hybridization
Mice
Mice, Knockout
Nerve Net - physiology
Periodicity
Phenotype
Plethysmography
Proto-Oncogene Proteins - genetics
Proto-Oncogene Proteins - metabolism
Proto-Oncogene Proteins c-ret
Receptor Protein-Tyrosine Kinases - genetics
Receptor Protein-Tyrosine Kinases - metabolism
Respiration
Reverse Transcriptase Polymerase Chain Reaction
RNA, Messenger - metabolism
Signal Transduction - physiology
Time Factors
Transcription Factors - deficiency
Transcription Factors - genetics
Transcription Factors - metabolism
title MASH-1/RET pathway involvement in development of brain stem control of respiratory frequency in newborn mice
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A55%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MASH-1/RET%20pathway%20involvement%20in%20development%20of%20brain%20stem%20control%20of%20respiratory%20frequency%20in%20newborn%20mice&rft.jtitle=Physiological%20genomics&rft.au=DAUGER,%20STEPHANE&rft.date=2001-12-21&rft.volume=7&rft.issue=2&rft.spage=149&rft.epage=157&rft.pages=149-157&rft.issn=1094-8341&rft.eissn=1531-2267&rft_id=info:doi/10.1152/physiolgenomics.00056.2001&rft_dat=%3Cproquest_pubme%3E72381849%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c413t-afdb3d6efccb1988af2a2aa10a463be6ddd79f56c817ccfeeea4319c975dd2f83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=72381849&rft_id=info:pmid/11773601&rfr_iscdi=true