Loading…

The Structural Mechanism of GTP Stabilized Oligomerization and Catalytic Activation of the Toxoplasma gondii Uracil Phosphoribosyltransferase

Uracil phosphoribosyltransferase (UPRT) is a member of a large family of salvage and biosynthetic enzymes, the phosphoribosyltransferases, and catalyzes the transfer of ribose 5-phosphate from α-D-5-phosphoribosyl-1-pyrophosphate (PRPP) to the N1 nitrogen of uracil. The UPRT from the opportunistic p...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2002-01, Vol.99 (1), p.78-83
Main Authors: Schumacher, Maria A., Bashor, Caleb J., Song, Minsun Hong, Otsu, Kanao, Zhu, Shuren, Parry, Ronald J., Ullman, Buddy, Brennan, Richard G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c513t-854ab7f8cfe44447b23229bdc58c341457e0dc9c7ea7a9c15dd41d8fd05eaaef3
cites cdi_FETCH-LOGICAL-c513t-854ab7f8cfe44447b23229bdc58c341457e0dc9c7ea7a9c15dd41d8fd05eaaef3
container_end_page 83
container_issue 1
container_start_page 78
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 99
creator Schumacher, Maria A.
Bashor, Caleb J.
Song, Minsun Hong
Otsu, Kanao
Zhu, Shuren
Parry, Ronald J.
Ullman, Buddy
Brennan, Richard G.
description Uracil phosphoribosyltransferase (UPRT) is a member of a large family of salvage and biosynthetic enzymes, the phosphoribosyltransferases, and catalyzes the transfer of ribose 5-phosphate from α-D-5-phosphoribosyl-1-pyrophosphate (PRPP) to the N1 nitrogen of uracil. The UPRT from the opportunistic pathogen Toxoplasma gondii represents a promising target for rational drug design, because it can create intracellular, lethal nucleotides from subversive substrates. However, the development of such compounds requires a detailed understanding of the catalytic mechanism. Toward this end we determined the crystal structure of the T. gondii UPRT bound to uracil and cPRPP, a nonhydrolyzable PRPP analogue, to 2.5-Å resolution. The structure suggests that the catalytic mechanism is substrate-assisted, and a tetramer would be the more active oligomeric form of the enzyme. Subsequent biochemical studies revealed that GTP binding, which has been suggested to play a role in catalysis by other UPRTs, causes a 6-fold activation of the T. gondii enzyme and strikingly stabilizes the tetramer form. The basis for stabilization was revealed in the 2.45-Å resolution structure of the UPRT-GTP complex, whereby residues from three subunits contributed to GTP binding. Thus, our studies reveal an allosteric mechanism involving nucleotide stabilization of a more active, higher order oligomer. Such regulation of UPRT could play a role in the balance of purine and pyrimidine nucleotide pools in the cell.
doi_str_mv 10.1073/pnas.012399599
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmed_primary_11773618</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3057494</jstor_id><sourcerecordid>3057494</sourcerecordid><originalsourceid>FETCH-LOGICAL-c513t-854ab7f8cfe44447b23229bdc58c341457e0dc9c7ea7a9c15dd41d8fd05eaaef3</originalsourceid><addsrcrecordid>eNp1kU9v0zAYhyMEYmVw5QJCFkLcUuzYqeMDh6kaA2lok-jO1hvHaVw5cWc707rvwHeeo5byR8IXH57n9-q1f1n2muA5wZx-2g4Q5pgUVIhSiCfZjGBB8gUT-Gk2w7jgecUKdpK9CGGDMRZlhZ9nJ4RwThekmmU_V51GP6IfVRw9WPRdqw4GE3rkWnSxuk4MamPNg27QlTVr12tvHiAaNyAYGrSECHYXjUJnKpq7PUjRmMau3L3bWgg9oLUbGmPQjQdlLLruXNh2zpvahZ2NHobQag9Bv8yetWCDfnW4T7ObL-er5df88uri2_LsMlcloTGvSgY1byvVapYOrwtaFKJuVFkpyggrucaNEopr4CAUKZuGkaZqG1xqAN3S0-zzfu52rHvdKD2kJazcetOD30kHRv5NBtPJtbuT6eNKwlP-4yHv3e2oQ5S9CUpbC4N2Y5CkKgqCF1US3_8jbtzoh_Q2WWBCsajwJM33kvIuBK_b4yIEy6llObUsjy2nwLs_1_-tH2pNwpuDMAV_YSEkkXyiH_5PZTtaG_V9TNrbvbYJ0fmjR3HJmWD0EcMjyF8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201309808</pqid></control><display><type>article</type><title>The Structural Mechanism of GTP Stabilized Oligomerization and Catalytic Activation of the Toxoplasma gondii Uracil Phosphoribosyltransferase</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Schumacher, Maria A. ; Bashor, Caleb J. ; Song, Minsun Hong ; Otsu, Kanao ; Zhu, Shuren ; Parry, Ronald J. ; Ullman, Buddy ; Brennan, Richard G.</creator><creatorcontrib>Schumacher, Maria A. ; Bashor, Caleb J. ; Song, Minsun Hong ; Otsu, Kanao ; Zhu, Shuren ; Parry, Ronald J. ; Ullman, Buddy ; Brennan, Richard G.</creatorcontrib><description>Uracil phosphoribosyltransferase (UPRT) is a member of a large family of salvage and biosynthetic enzymes, the phosphoribosyltransferases, and catalyzes the transfer of ribose 5-phosphate from α-D-5-phosphoribosyl-1-pyrophosphate (PRPP) to the N1 nitrogen of uracil. The UPRT from the opportunistic pathogen Toxoplasma gondii represents a promising target for rational drug design, because it can create intracellular, lethal nucleotides from subversive substrates. However, the development of such compounds requires a detailed understanding of the catalytic mechanism. Toward this end we determined the crystal structure of the T. gondii UPRT bound to uracil and cPRPP, a nonhydrolyzable PRPP analogue, to 2.5-Å resolution. The structure suggests that the catalytic mechanism is substrate-assisted, and a tetramer would be the more active oligomeric form of the enzyme. Subsequent biochemical studies revealed that GTP binding, which has been suggested to play a role in catalysis by other UPRTs, causes a 6-fold activation of the T. gondii enzyme and strikingly stabilizes the tetramer form. The basis for stabilization was revealed in the 2.45-Å resolution structure of the UPRT-GTP complex, whereby residues from three subunits contributed to GTP binding. Thus, our studies reveal an allosteric mechanism involving nucleotide stabilization of a more active, higher order oligomer. Such regulation of UPRT could play a role in the balance of purine and pyrimidine nucleotide pools in the cell.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.012399599</identifier><identifier>PMID: 11773618</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Active sites ; Animals ; Atoms ; Biochemistry ; Biological Sciences ; Biology ; Catalysis ; Chemistry ; Dimerization ; Dimers ; Enzymes ; GTP ; Guanosine Triphosphate - chemistry ; Guanosine Triphosphate - metabolism ; Kinetics ; Ligands ; Light ; Models, Chemical ; Models, Molecular ; Molecular structure ; Molecules ; Mutagenesis, Site-Directed ; Parasites ; Pentosyltransferases - chemistry ; Phosphates ; Protein Binding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Scattering, Radiation ; Substrate Specificity ; Toxoplasma - enzymology ; Toxoplasma gondii ; Uracil - chemistry</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2002-01, Vol.99 (1), p.78-83</ispartof><rights>Copyright 1993-2002 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jan 8, 2002</rights><rights>Copyright © 2002, The National Academy of Sciences 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c513t-854ab7f8cfe44447b23229bdc58c341457e0dc9c7ea7a9c15dd41d8fd05eaaef3</citedby><cites>FETCH-LOGICAL-c513t-854ab7f8cfe44447b23229bdc58c341457e0dc9c7ea7a9c15dd41d8fd05eaaef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/99/1.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3057494$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3057494$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792,58237,58470</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11773618$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schumacher, Maria A.</creatorcontrib><creatorcontrib>Bashor, Caleb J.</creatorcontrib><creatorcontrib>Song, Minsun Hong</creatorcontrib><creatorcontrib>Otsu, Kanao</creatorcontrib><creatorcontrib>Zhu, Shuren</creatorcontrib><creatorcontrib>Parry, Ronald J.</creatorcontrib><creatorcontrib>Ullman, Buddy</creatorcontrib><creatorcontrib>Brennan, Richard G.</creatorcontrib><title>The Structural Mechanism of GTP Stabilized Oligomerization and Catalytic Activation of the Toxoplasma gondii Uracil Phosphoribosyltransferase</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Uracil phosphoribosyltransferase (UPRT) is a member of a large family of salvage and biosynthetic enzymes, the phosphoribosyltransferases, and catalyzes the transfer of ribose 5-phosphate from α-D-5-phosphoribosyl-1-pyrophosphate (PRPP) to the N1 nitrogen of uracil. The UPRT from the opportunistic pathogen Toxoplasma gondii represents a promising target for rational drug design, because it can create intracellular, lethal nucleotides from subversive substrates. However, the development of such compounds requires a detailed understanding of the catalytic mechanism. Toward this end we determined the crystal structure of the T. gondii UPRT bound to uracil and cPRPP, a nonhydrolyzable PRPP analogue, to 2.5-Å resolution. The structure suggests that the catalytic mechanism is substrate-assisted, and a tetramer would be the more active oligomeric form of the enzyme. Subsequent biochemical studies revealed that GTP binding, which has been suggested to play a role in catalysis by other UPRTs, causes a 6-fold activation of the T. gondii enzyme and strikingly stabilizes the tetramer form. The basis for stabilization was revealed in the 2.45-Å resolution structure of the UPRT-GTP complex, whereby residues from three subunits contributed to GTP binding. Thus, our studies reveal an allosteric mechanism involving nucleotide stabilization of a more active, higher order oligomer. Such regulation of UPRT could play a role in the balance of purine and pyrimidine nucleotide pools in the cell.</description><subject>Active sites</subject><subject>Animals</subject><subject>Atoms</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>Biology</subject><subject>Catalysis</subject><subject>Chemistry</subject><subject>Dimerization</subject><subject>Dimers</subject><subject>Enzymes</subject><subject>GTP</subject><subject>Guanosine Triphosphate - chemistry</subject><subject>Guanosine Triphosphate - metabolism</subject><subject>Kinetics</subject><subject>Ligands</subject><subject>Light</subject><subject>Models, Chemical</subject><subject>Models, Molecular</subject><subject>Molecular structure</subject><subject>Molecules</subject><subject>Mutagenesis, Site-Directed</subject><subject>Parasites</subject><subject>Pentosyltransferases - chemistry</subject><subject>Phosphates</subject><subject>Protein Binding</subject><subject>Protein Structure, Secondary</subject><subject>Protein Structure, Tertiary</subject><subject>Scattering, Radiation</subject><subject>Substrate Specificity</subject><subject>Toxoplasma - enzymology</subject><subject>Toxoplasma gondii</subject><subject>Uracil - chemistry</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNp1kU9v0zAYhyMEYmVw5QJCFkLcUuzYqeMDh6kaA2lok-jO1hvHaVw5cWc707rvwHeeo5byR8IXH57n9-q1f1n2muA5wZx-2g4Q5pgUVIhSiCfZjGBB8gUT-Gk2w7jgecUKdpK9CGGDMRZlhZ9nJ4RwThekmmU_V51GP6IfVRw9WPRdqw4GE3rkWnSxuk4MamPNg27QlTVr12tvHiAaNyAYGrSECHYXjUJnKpq7PUjRmMau3L3bWgg9oLUbGmPQjQdlLLruXNh2zpvahZ2NHobQag9Bv8yetWCDfnW4T7ObL-er5df88uri2_LsMlcloTGvSgY1byvVapYOrwtaFKJuVFkpyggrucaNEopr4CAUKZuGkaZqG1xqAN3S0-zzfu52rHvdKD2kJazcetOD30kHRv5NBtPJtbuT6eNKwlP-4yHv3e2oQ5S9CUpbC4N2Y5CkKgqCF1US3_8jbtzoh_Q2WWBCsajwJM33kvIuBK_b4yIEy6llObUsjy2nwLs_1_-tH2pNwpuDMAV_YSEkkXyiH_5PZTtaG_V9TNrbvbYJ0fmjR3HJmWD0EcMjyF8</recordid><startdate>20020108</startdate><enddate>20020108</enddate><creator>Schumacher, Maria A.</creator><creator>Bashor, Caleb J.</creator><creator>Song, Minsun Hong</creator><creator>Otsu, Kanao</creator><creator>Zhu, Shuren</creator><creator>Parry, Ronald J.</creator><creator>Ullman, Buddy</creator><creator>Brennan, Richard G.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><general>The National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20020108</creationdate><title>The Structural Mechanism of GTP Stabilized Oligomerization and Catalytic Activation of the Toxoplasma gondii Uracil Phosphoribosyltransferase</title><author>Schumacher, Maria A. ; Bashor, Caleb J. ; Song, Minsun Hong ; Otsu, Kanao ; Zhu, Shuren ; Parry, Ronald J. ; Ullman, Buddy ; Brennan, Richard G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c513t-854ab7f8cfe44447b23229bdc58c341457e0dc9c7ea7a9c15dd41d8fd05eaaef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Active sites</topic><topic>Animals</topic><topic>Atoms</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>Biology</topic><topic>Catalysis</topic><topic>Chemistry</topic><topic>Dimerization</topic><topic>Dimers</topic><topic>Enzymes</topic><topic>GTP</topic><topic>Guanosine Triphosphate - chemistry</topic><topic>Guanosine Triphosphate - metabolism</topic><topic>Kinetics</topic><topic>Ligands</topic><topic>Light</topic><topic>Models, Chemical</topic><topic>Models, Molecular</topic><topic>Molecular structure</topic><topic>Molecules</topic><topic>Mutagenesis, Site-Directed</topic><topic>Parasites</topic><topic>Pentosyltransferases - chemistry</topic><topic>Phosphates</topic><topic>Protein Binding</topic><topic>Protein Structure, Secondary</topic><topic>Protein Structure, Tertiary</topic><topic>Scattering, Radiation</topic><topic>Substrate Specificity</topic><topic>Toxoplasma - enzymology</topic><topic>Toxoplasma gondii</topic><topic>Uracil - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schumacher, Maria A.</creatorcontrib><creatorcontrib>Bashor, Caleb J.</creatorcontrib><creatorcontrib>Song, Minsun Hong</creatorcontrib><creatorcontrib>Otsu, Kanao</creatorcontrib><creatorcontrib>Zhu, Shuren</creatorcontrib><creatorcontrib>Parry, Ronald J.</creatorcontrib><creatorcontrib>Ullman, Buddy</creatorcontrib><creatorcontrib>Brennan, Richard G.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schumacher, Maria A.</au><au>Bashor, Caleb J.</au><au>Song, Minsun Hong</au><au>Otsu, Kanao</au><au>Zhu, Shuren</au><au>Parry, Ronald J.</au><au>Ullman, Buddy</au><au>Brennan, Richard G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Structural Mechanism of GTP Stabilized Oligomerization and Catalytic Activation of the Toxoplasma gondii Uracil Phosphoribosyltransferase</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2002-01-08</date><risdate>2002</risdate><volume>99</volume><issue>1</issue><spage>78</spage><epage>83</epage><pages>78-83</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Uracil phosphoribosyltransferase (UPRT) is a member of a large family of salvage and biosynthetic enzymes, the phosphoribosyltransferases, and catalyzes the transfer of ribose 5-phosphate from α-D-5-phosphoribosyl-1-pyrophosphate (PRPP) to the N1 nitrogen of uracil. The UPRT from the opportunistic pathogen Toxoplasma gondii represents a promising target for rational drug design, because it can create intracellular, lethal nucleotides from subversive substrates. However, the development of such compounds requires a detailed understanding of the catalytic mechanism. Toward this end we determined the crystal structure of the T. gondii UPRT bound to uracil and cPRPP, a nonhydrolyzable PRPP analogue, to 2.5-Å resolution. The structure suggests that the catalytic mechanism is substrate-assisted, and a tetramer would be the more active oligomeric form of the enzyme. Subsequent biochemical studies revealed that GTP binding, which has been suggested to play a role in catalysis by other UPRTs, causes a 6-fold activation of the T. gondii enzyme and strikingly stabilizes the tetramer form. The basis for stabilization was revealed in the 2.45-Å resolution structure of the UPRT-GTP complex, whereby residues from three subunits contributed to GTP binding. Thus, our studies reveal an allosteric mechanism involving nucleotide stabilization of a more active, higher order oligomer. Such regulation of UPRT could play a role in the balance of purine and pyrimidine nucleotide pools in the cell.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>11773618</pmid><doi>10.1073/pnas.012399599</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2002-01, Vol.99 (1), p.78-83
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmed_primary_11773618
source JSTOR Archival Journals and Primary Sources Collection; PubMed Central
subjects Active sites
Animals
Atoms
Biochemistry
Biological Sciences
Biology
Catalysis
Chemistry
Dimerization
Dimers
Enzymes
GTP
Guanosine Triphosphate - chemistry
Guanosine Triphosphate - metabolism
Kinetics
Ligands
Light
Models, Chemical
Models, Molecular
Molecular structure
Molecules
Mutagenesis, Site-Directed
Parasites
Pentosyltransferases - chemistry
Phosphates
Protein Binding
Protein Structure, Secondary
Protein Structure, Tertiary
Scattering, Radiation
Substrate Specificity
Toxoplasma - enzymology
Toxoplasma gondii
Uracil - chemistry
title The Structural Mechanism of GTP Stabilized Oligomerization and Catalytic Activation of the Toxoplasma gondii Uracil Phosphoribosyltransferase
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T05%3A59%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Structural%20Mechanism%20of%20GTP%20Stabilized%20Oligomerization%20and%20Catalytic%20Activation%20of%20the%20Toxoplasma%20gondii%20Uracil%20Phosphoribosyltransferase&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Schumacher,%20Maria%20A.&rft.date=2002-01-08&rft.volume=99&rft.issue=1&rft.spage=78&rft.epage=83&rft.pages=78-83&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.012399599&rft_dat=%3Cjstor_pubme%3E3057494%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c513t-854ab7f8cfe44447b23229bdc58c341457e0dc9c7ea7a9c15dd41d8fd05eaaef3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=201309808&rft_id=info:pmid/11773618&rft_jstor_id=3057494&rfr_iscdi=true