Loading…
The Structures of the Active Center in Dark-Adapted Bacteriorhodopsin by Solution-State NMR Spectroscopy
The two forms of bacteriorhodopsin present in the dark-adapted state, containing either all-trans or 13-cis, 15-syn retinal, were examined by using solution state NMR, and their structures were determined. Comparison of the all-trans and the 13-cis, 15-syn forms shows a shift in position of about 0....
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2002-07, Vol.99 (15), p.9765-9770 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c554t-180d7ac11392e390046c8b9340af07a74c1dd7ea0503a977583d3c8720842ee33 |
---|---|
cites | cdi_FETCH-LOGICAL-c554t-180d7ac11392e390046c8b9340af07a74c1dd7ea0503a977583d3c8720842ee33 |
container_end_page | 9770 |
container_issue | 15 |
container_start_page | 9765 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 99 |
creator | Patzelt, Heiko Simon, Bernd terLaak, Antonius Kessler, Brigitte Kühne, Ronald Schmieder, Peter Oesterhelt, Dieter Oschkinat, Hartmut |
description | The two forms of bacteriorhodopsin present in the dark-adapted state, containing either all-trans or 13-cis, 15-syn retinal, were examined by using solution state NMR, and their structures were determined. Comparison of the all-trans and the 13-cis, 15-syn forms shows a shift in position of about 0.25 Å within the pocket of the protein. Comparing this to the 13-cis,15-anti chromophore of the catalytic cycle M-intermediate structure, the 13-cis,15-syn form demonstrates a less pronounced up-tilt of the retinal C12-C14 region, while leaving W182 and T178 essentially unchanged. The N-H dipole of the Schiff base orients toward the extracellular side in both forms, however, it reorients toward the intracellular side in the 13-cis,15-anti configuration to form the catalytic M-intermediate. Thus, the change of the N-H dipole is considered primarily responsible for energy storage, conformation changes of the protein, and the deprotonation of the Schiff base. The structural similarity of the all-trans and 13-cis,15-syn forms is taken as strong evidence for the ion dipole dragging model by which proton (hydroxide ion) translocation follows the change of the dipole. |
doi_str_mv | 10.1073/pnas.132253899 |
format | article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmed_primary_12119389</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3059283</jstor_id><sourcerecordid>3059283</sourcerecordid><originalsourceid>FETCH-LOGICAL-c554t-180d7ac11392e390046c8b9340af07a74c1dd7ea0503a977583d3c8720842ee33</originalsourceid><addsrcrecordid>eNp9kUtvEzEUhS0EomlhywohiwWsJly_YnvRRQhPqYBEytpyPB4yYTIebE_V_HscJYTCgpWle75j3XMPQk8ITAlI9mrobZoSRqlgSut7aEJAk2rGNdxHEwAqK8UpP0PnKW0AQAsFD9EZoYToYpig9fXa42WOo8tj9AmHBucymbvc3ni88H32Ebc9fmPjj2pe2yH7Gr-2rozbENehDkMq8mqHl6Ebcxv6aplt9vjzp694OXiXY0guDLtH6EFju-QfH98L9O3d2-vFh-rqy_uPi_lV5YTguSIKamkdIUxTzzQAnzm10oyDbUBayR2pa-ktCGBWSykUq5lTkkLJ6T1jF-jy8O8wrra-diVBtJ0ZYru1cWeCbc3fSt-uzfdwYwgVAKr4Xxz9Mfwcfcpm2ybnu872PozJyHI4AZIU8Pk_4CaMsS_ZDAXCFJ_x_TbTA-TKGVL0zWkRAmZfoNkXaE4FFsOzu-v_wY-N3QH2xt-y1oYIo-VMFODlfwHTjF2X_W0u5NMDuUk5xBPKQGiqGPsFE0W4hA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201384643</pqid></control><display><type>article</type><title>The Structures of the Active Center in Dark-Adapted Bacteriorhodopsin by Solution-State NMR Spectroscopy</title><source>PubMed (Medline)</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Patzelt, Heiko ; Simon, Bernd ; terLaak, Antonius ; Kessler, Brigitte ; Kühne, Ronald ; Schmieder, Peter ; Oesterhelt, Dieter ; Oschkinat, Hartmut</creator><creatorcontrib>Patzelt, Heiko ; Simon, Bernd ; terLaak, Antonius ; Kessler, Brigitte ; Kühne, Ronald ; Schmieder, Peter ; Oesterhelt, Dieter ; Oschkinat, Hartmut</creatorcontrib><description>The two forms of bacteriorhodopsin present in the dark-adapted state, containing either all-trans or 13-cis, 15-syn retinal, were examined by using solution state NMR, and their structures were determined. Comparison of the all-trans and the 13-cis, 15-syn forms shows a shift in position of about 0.25 Å within the pocket of the protein. Comparing this to the 13-cis,15-anti chromophore of the catalytic cycle M-intermediate structure, the 13-cis,15-syn form demonstrates a less pronounced up-tilt of the retinal C12-C14 region, while leaving W182 and T178 essentially unchanged. The N-H dipole of the Schiff base orients toward the extracellular side in both forms, however, it reorients toward the intracellular side in the 13-cis,15-anti configuration to form the catalytic M-intermediate. Thus, the change of the N-H dipole is considered primarily responsible for energy storage, conformation changes of the protein, and the deprotonation of the Schiff base. The structural similarity of the all-trans and 13-cis,15-syn forms is taken as strong evidence for the ion dipole dragging model by which proton (hydroxide ion) translocation follows the change of the dipole.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.132253899</identifier><identifier>PMID: 12119389</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amino Acid Sequence ; Atoms ; Bacteriorhodopsins ; Bacteriorhodopsins - chemistry ; Binding Sites ; Biological Sciences ; Biophysics ; Chemical equilibrium ; Chromophores ; Darkness ; Family structure ; Functional groups ; Isomerization ; Magnetic Resonance Spectroscopy - methods ; Models, Molecular ; Molecules ; NMR ; Nuclear magnetic resonance ; Protein Conformation ; Proteins ; Protons ; Schiff bases</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2002-07, Vol.99 (15), p.9765-9770</ispartof><rights>Copyright 1993-2002 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jul 23, 2002</rights><rights>Copyright © 2002, The National Academy of Sciences 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c554t-180d7ac11392e390046c8b9340af07a74c1dd7ea0503a977583d3c8720842ee33</citedby><cites>FETCH-LOGICAL-c554t-180d7ac11392e390046c8b9340af07a74c1dd7ea0503a977583d3c8720842ee33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/99/15.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3059283$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3059283$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792,58237,58470</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12119389$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Patzelt, Heiko</creatorcontrib><creatorcontrib>Simon, Bernd</creatorcontrib><creatorcontrib>terLaak, Antonius</creatorcontrib><creatorcontrib>Kessler, Brigitte</creatorcontrib><creatorcontrib>Kühne, Ronald</creatorcontrib><creatorcontrib>Schmieder, Peter</creatorcontrib><creatorcontrib>Oesterhelt, Dieter</creatorcontrib><creatorcontrib>Oschkinat, Hartmut</creatorcontrib><title>The Structures of the Active Center in Dark-Adapted Bacteriorhodopsin by Solution-State NMR Spectroscopy</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The two forms of bacteriorhodopsin present in the dark-adapted state, containing either all-trans or 13-cis, 15-syn retinal, were examined by using solution state NMR, and their structures were determined. Comparison of the all-trans and the 13-cis, 15-syn forms shows a shift in position of about 0.25 Å within the pocket of the protein. Comparing this to the 13-cis,15-anti chromophore of the catalytic cycle M-intermediate structure, the 13-cis,15-syn form demonstrates a less pronounced up-tilt of the retinal C12-C14 region, while leaving W182 and T178 essentially unchanged. The N-H dipole of the Schiff base orients toward the extracellular side in both forms, however, it reorients toward the intracellular side in the 13-cis,15-anti configuration to form the catalytic M-intermediate. Thus, the change of the N-H dipole is considered primarily responsible for energy storage, conformation changes of the protein, and the deprotonation of the Schiff base. The structural similarity of the all-trans and 13-cis,15-syn forms is taken as strong evidence for the ion dipole dragging model by which proton (hydroxide ion) translocation follows the change of the dipole.</description><subject>Amino Acid Sequence</subject><subject>Atoms</subject><subject>Bacteriorhodopsins</subject><subject>Bacteriorhodopsins - chemistry</subject><subject>Binding Sites</subject><subject>Biological Sciences</subject><subject>Biophysics</subject><subject>Chemical equilibrium</subject><subject>Chromophores</subject><subject>Darkness</subject><subject>Family structure</subject><subject>Functional groups</subject><subject>Isomerization</subject><subject>Magnetic Resonance Spectroscopy - methods</subject><subject>Models, Molecular</subject><subject>Molecules</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Protein Conformation</subject><subject>Proteins</subject><subject>Protons</subject><subject>Schiff bases</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNp9kUtvEzEUhS0EomlhywohiwWsJly_YnvRRQhPqYBEytpyPB4yYTIebE_V_HscJYTCgpWle75j3XMPQk8ITAlI9mrobZoSRqlgSut7aEJAk2rGNdxHEwAqK8UpP0PnKW0AQAsFD9EZoYToYpig9fXa42WOo8tj9AmHBucymbvc3ni88H32Ebc9fmPjj2pe2yH7Gr-2rozbENehDkMq8mqHl6Ebcxv6aplt9vjzp694OXiXY0guDLtH6EFju-QfH98L9O3d2-vFh-rqy_uPi_lV5YTguSIKamkdIUxTzzQAnzm10oyDbUBayR2pa-ktCGBWSykUq5lTkkLJ6T1jF-jy8O8wrra-diVBtJ0ZYru1cWeCbc3fSt-uzfdwYwgVAKr4Xxz9Mfwcfcpm2ybnu872PozJyHI4AZIU8Pk_4CaMsS_ZDAXCFJ_x_TbTA-TKGVL0zWkRAmZfoNkXaE4FFsOzu-v_wY-N3QH2xt-y1oYIo-VMFODlfwHTjF2X_W0u5NMDuUk5xBPKQGiqGPsFE0W4hA</recordid><startdate>20020723</startdate><enddate>20020723</enddate><creator>Patzelt, Heiko</creator><creator>Simon, Bernd</creator><creator>terLaak, Antonius</creator><creator>Kessler, Brigitte</creator><creator>Kühne, Ronald</creator><creator>Schmieder, Peter</creator><creator>Oesterhelt, Dieter</creator><creator>Oschkinat, Hartmut</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><general>The National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20020723</creationdate><title>The Structures of the Active Center in Dark-Adapted Bacteriorhodopsin by Solution-State NMR Spectroscopy</title><author>Patzelt, Heiko ; Simon, Bernd ; terLaak, Antonius ; Kessler, Brigitte ; Kühne, Ronald ; Schmieder, Peter ; Oesterhelt, Dieter ; Oschkinat, Hartmut</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c554t-180d7ac11392e390046c8b9340af07a74c1dd7ea0503a977583d3c8720842ee33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Amino Acid Sequence</topic><topic>Atoms</topic><topic>Bacteriorhodopsins</topic><topic>Bacteriorhodopsins - chemistry</topic><topic>Binding Sites</topic><topic>Biological Sciences</topic><topic>Biophysics</topic><topic>Chemical equilibrium</topic><topic>Chromophores</topic><topic>Darkness</topic><topic>Family structure</topic><topic>Functional groups</topic><topic>Isomerization</topic><topic>Magnetic Resonance Spectroscopy - methods</topic><topic>Models, Molecular</topic><topic>Molecules</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Protein Conformation</topic><topic>Proteins</topic><topic>Protons</topic><topic>Schiff bases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patzelt, Heiko</creatorcontrib><creatorcontrib>Simon, Bernd</creatorcontrib><creatorcontrib>terLaak, Antonius</creatorcontrib><creatorcontrib>Kessler, Brigitte</creatorcontrib><creatorcontrib>Kühne, Ronald</creatorcontrib><creatorcontrib>Schmieder, Peter</creatorcontrib><creatorcontrib>Oesterhelt, Dieter</creatorcontrib><creatorcontrib>Oschkinat, Hartmut</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Patzelt, Heiko</au><au>Simon, Bernd</au><au>terLaak, Antonius</au><au>Kessler, Brigitte</au><au>Kühne, Ronald</au><au>Schmieder, Peter</au><au>Oesterhelt, Dieter</au><au>Oschkinat, Hartmut</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Structures of the Active Center in Dark-Adapted Bacteriorhodopsin by Solution-State NMR Spectroscopy</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2002-07-23</date><risdate>2002</risdate><volume>99</volume><issue>15</issue><spage>9765</spage><epage>9770</epage><pages>9765-9770</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The two forms of bacteriorhodopsin present in the dark-adapted state, containing either all-trans or 13-cis, 15-syn retinal, were examined by using solution state NMR, and their structures were determined. Comparison of the all-trans and the 13-cis, 15-syn forms shows a shift in position of about 0.25 Å within the pocket of the protein. Comparing this to the 13-cis,15-anti chromophore of the catalytic cycle M-intermediate structure, the 13-cis,15-syn form demonstrates a less pronounced up-tilt of the retinal C12-C14 region, while leaving W182 and T178 essentially unchanged. The N-H dipole of the Schiff base orients toward the extracellular side in both forms, however, it reorients toward the intracellular side in the 13-cis,15-anti configuration to form the catalytic M-intermediate. Thus, the change of the N-H dipole is considered primarily responsible for energy storage, conformation changes of the protein, and the deprotonation of the Schiff base. The structural similarity of the all-trans and 13-cis,15-syn forms is taken as strong evidence for the ion dipole dragging model by which proton (hydroxide ion) translocation follows the change of the dipole.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>12119389</pmid><doi>10.1073/pnas.132253899</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2002-07, Vol.99 (15), p.9765-9770 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmed_primary_12119389 |
source | PubMed (Medline); JSTOR Archival Journals and Primary Sources Collection |
subjects | Amino Acid Sequence Atoms Bacteriorhodopsins Bacteriorhodopsins - chemistry Binding Sites Biological Sciences Biophysics Chemical equilibrium Chromophores Darkness Family structure Functional groups Isomerization Magnetic Resonance Spectroscopy - methods Models, Molecular Molecules NMR Nuclear magnetic resonance Protein Conformation Proteins Protons Schiff bases |
title | The Structures of the Active Center in Dark-Adapted Bacteriorhodopsin by Solution-State NMR Spectroscopy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A15%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Structures%20of%20the%20Active%20Center%20in%20Dark-Adapted%20Bacteriorhodopsin%20by%20Solution-State%20NMR%20Spectroscopy&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Patzelt,%20Heiko&rft.date=2002-07-23&rft.volume=99&rft.issue=15&rft.spage=9765&rft.epage=9770&rft.pages=9765-9770&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.132253899&rft_dat=%3Cjstor_pubme%3E3059283%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c554t-180d7ac11392e390046c8b9340af07a74c1dd7ea0503a977583d3c8720842ee33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=201384643&rft_id=info:pmid/12119389&rft_jstor_id=3059283&rfr_iscdi=true |