Loading…
Pyrimethamine and WR99210 Exert Opposing Selection on Dihydrofolate Reductase from Plasmodium vivax
Plasmodium vivax is a major public health problem in Asia and South and Central America where it is most prevalent. Until very recently, the parasite has been effectively treated with chloroquine, but resistance to this drug has now been reported in several areas. Affordable alternative treatments f...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2002-10, Vol.99 (20), p.13137-13141 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Plasmodium vivax is a major public health problem in Asia and South and Central America where it is most prevalent. Until very recently, the parasite has been effectively treated with chloroquine, but resistance to this drug has now been reported in several areas. Affordable alternative treatments for vivax malaria are urgently needed. Pyrimethamine-sulfadoxine is an inhibitor of dihydrofolate reductase (DHFR) that has been widely used to treat chloroquine-resistant Plasmodium falciparum malaria. DHFR inhibitors have not been considered for treatment of vivax malaria, because initial trials showed poor efficacy against P. vivax. P. vivax cannot be grown in culture; the reason for its resistance to DHFR inhibitors is unknown. We show that, like P. falciparum, point mutations in the dhfr gene can cause resistance to pyrimethamine in P. vivax. WR99210 is a novel inhibitor of DHFR, effective even against the most pyrimethamine-resistant P. falciparum strains. We have found that it is also an extremely effective inhibitor of the P. vivax DHFR, and mutations that confer high-level resistance to pyrimethamine render the P. vivax enzyme exquisitely sensitive to WR99210. These data suggest that pyrimethamine and WR99210 would exert opposing selective forces on the P. vivax population. If used in combination, these two drugs could greatly slow the selection of parasites resistant to both drugs. If that is the case, this novel class of DHFR inhibitors could provide effective and affordable treatment for chloroquine- and pyrimethamine-resistant vivax and falciparum malaria for many years to come. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.182295999 |