Loading…

Compositional Variation in Bullet Lead Manufacture

The concentrations of antimony, copper, tin, arsenic, silver, bismuth, and cadmium in lead alloys produced by two smelters and one ammunition manufacturer were determined using inductively coupled plasma-atomic emission spectrometry. These element concentrations were used to measure the variations i...

Full description

Saved in:
Bibliographic Details
Published in:Journal of forensic sciences 2002-09, Vol.47 (5), p.1-9
Main Authors: Koons, RD, Grant, DM
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The concentrations of antimony, copper, tin, arsenic, silver, bismuth, and cadmium in lead alloys produced by two smelters and one ammunition manufacturer were determined using inductively coupled plasma-atomic emission spectrometry. These element concentrations were used to measure the variations in composition of lead products that result from various processes involved in the manufacture of lead projectiles. In general, when a pot containing molten lead is used to cast a number of objects, these objects are similar, although not necessarily analytically indistinguishable in their elemental compositions. In each subsequent step in the processing of lead at the smelter and at the ammunition manufacturer, the size of an individual homogeneous melt of lead decreases as more distinct compositions are formed as a result of remelting and mixing of sources, including lead scrap. The ammunition manufacturer in this study produced at least 10 compositionally distinguishable groups of bullet wire in a 19.7-h period. The largest group could potentially be used to produce a maximum of 1.3 million compositionally indistinguishable 40 grain bullets.
ISSN:0022-1198
1556-4029
DOI:10.1520/JFS15516J