Loading…

Dual effects of macrophage inflammatory protein-1alpha on osteolysis and tumor burden in the murine 5TGM1 model of myeloma bone disease

Recent data have implicated macrophage inflammatory protein-1alpha (MIP-1alpha) in multiple myeloma (MM)-associated osteolysis. However, it is unclear whether the chemokine's effects are direct, to enhance osteolysis, or indirect and mediated through a reduction in tumor burden, or both. It is...

Full description

Saved in:
Bibliographic Details
Published in:Blood 2003-07, Vol.102 (1), p.311
Main Authors: Oyajobi, Babatunde O, Franchin, Giovanni, Williams, Paul J, Pulkrabek, Donna, Gupta, Anjana, Munoz, Steve, Grubbs, Barry, Zhao, Ming, Chen, Di, Sherry, Barbara, Mundy, Gregory R
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recent data have implicated macrophage inflammatory protein-1alpha (MIP-1alpha) in multiple myeloma (MM)-associated osteolysis. However, it is unclear whether the chemokine's effects are direct, to enhance osteolysis, or indirect and mediated through a reduction in tumor burden, or both. It is also unclear whether MIP-1alpha requires other factors such as receptor activator of nuclear factor-kappaB ligand (RANKL) for its effects on bone. In murine 5TGM1 (Radl) myeloma-bearing mice, administration of neutralizing anti-MIP-1alpha antibodies reduced tumor load assessed by monoclonal paraprotein titers, prevented splenomegaly, limited development of osteolytic lesions, and concomitantly reduced tumor growth in bone. To determine the effects of MIP-1alpha on bone in vivo, Chinese hamster ovary (CHO) cells secreting human MIP-1alpha (CHO/MIP-1alpha) were inoculated into athymic mice. Mice bearing intramuscular CHO/MIP-1alpha tumors developed lytic lesions at distant skeletal sites, which occurred earlier and were larger than those in mice with CHO/empty vector (EV) tumors. When experimental metastases were induced via intracardiac inoculation, mice bearing CHO/MIP-1alpha tumors developed hypercalcemia and significantly more osteolytic lesions than mice bearing CHO/EV tumors, with intramedullary CHO/MIP-1alpha tumors associated with significantly more tartrate-resistant acid phosphatase-positive (TRAP+) osteoclasts. Injection of recombinant MIP-1alpha over calvariae of normal mice evoked a striking increase in osteoclast formation, an effect dependent on RANK/RANKL signaling because MIP-1alpha had no effect in RANK-/- mice. Together, these results establish that MIP-1alpha is sufficient to induce MM-like destructive lesions in bone in vivo. Because, in the 5TGM1 model, blockade of osteoclastic resorption in other situations does not decrease tumor burden, we conclude that MIP-1alpha exerts a dual effect in myeloma, on osteoclasts, and tumor cells.
ISSN:0006-4971