Loading…
Statistical inversion for medical x-ray tomography with few radiographs: I. General theory
In x-ray tomography, the structure of a three-dimensional body is reconstructed from a collection of projection images of the body. Medical CT imaging does this using an extensive set of projections from all around the body. However, in many practical imaging situations only a small number of trunca...
Saved in:
Published in: | Physics in medicine & biology 2003-05, Vol.48 (10), p.1437-1463 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c405t-68a07246b85d80f902d42eb1552fc93025c780a145aac89276418bdad9b3f3553 |
---|---|
cites | cdi_FETCH-LOGICAL-c405t-68a07246b85d80f902d42eb1552fc93025c780a145aac89276418bdad9b3f3553 |
container_end_page | 1463 |
container_issue | 10 |
container_start_page | 1437 |
container_title | Physics in medicine & biology |
container_volume | 48 |
creator | Siltanen, S Kolehmainen, V Järvenpää, S Kaipio, J P Koistinen, P Lassas, M Pirttilä, J Somersalo, E |
description | In x-ray tomography, the structure of a three-dimensional body is reconstructed from a collection of projection images of the body. Medical CT imaging does this using an extensive set of projections from all around the body. However, in many practical imaging situations only a small number of truncated projections are available from a limited angle of view. Three-dimensional imaging using such data is complicated for two reasons: (i) typically, sparse projection data do not contain sufficient information to completely describe the 3D body, and (ii) traditional CT reconstruction algorithms, such as filtered backprojection, do not work well when applied to few irregularly spaced projections. Concerning (i), existing results about the information content of sparse projection data are reviewed and discussed. Concerning (ii), it is shown how Bayesian inversion methods can be used to incorporate a priori information into the reconstruction method, leading to improved image quality over traditional methods. Based on the discussion, a low-dose three-dimensional x-ray imaging modality is described. |
doi_str_mv | 10.1088/0031-9155/48/10/314 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_12812457</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>73388397</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-68a07246b85d80f902d42eb1552fc93025c780a145aac89276418bdad9b3f3553</originalsourceid><addsrcrecordid>eNqNkM1KAzEURoMotlafQJBsdCFMm9-ZjDspWguCC3XjJmRmEhtpJ2MytfbtzdhiF7pwdeHjfPdeDgCnGA0xEmKEEMVJjjkfMTHCaEQx2wN9TFOcpDxF-6D_Q_TAUQhvCGEsCDsEPUwEJoxnffDy2KrWhtaWag5t_aF9sK6Gxnm40NV3-pl4tYatW7hXr5rZGq5sO4NGr6BXld2E4QpOh3Cia-1jo51p59fH4MCoedAn2zkAz7c3T-O75P5hMh1f3yclQ7xNUqFQRlhaCF4JZHJEKkZ0Eb8mpswpIrzMBFKYcaVKkZMsZVgUlaryghrKOR2Ai83exrv3pQ6tXNhQ6vlc1dotg8woFYLmWQTpBiy9C8FrIxtvF8qvJUayUyo7YbITJpnowqg0ts6265dFVLLrbB1G4HwLqBB9Ga_q0oYdx7J4Pu3-HG4465p_Xr78XfgDlE1l6BcMVpiP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>73388397</pqid></control><display><type>article</type><title>Statistical inversion for medical x-ray tomography with few radiographs: I. General theory</title><source>Institute of Physics</source><creator>Siltanen, S ; Kolehmainen, V ; Järvenpää, S ; Kaipio, J P ; Koistinen, P ; Lassas, M ; Pirttilä, J ; Somersalo, E</creator><creatorcontrib>Siltanen, S ; Kolehmainen, V ; Järvenpää, S ; Kaipio, J P ; Koistinen, P ; Lassas, M ; Pirttilä, J ; Somersalo, E</creatorcontrib><description>In x-ray tomography, the structure of a three-dimensional body is reconstructed from a collection of projection images of the body. Medical CT imaging does this using an extensive set of projections from all around the body. However, in many practical imaging situations only a small number of truncated projections are available from a limited angle of view. Three-dimensional imaging using such data is complicated for two reasons: (i) typically, sparse projection data do not contain sufficient information to completely describe the 3D body, and (ii) traditional CT reconstruction algorithms, such as filtered backprojection, do not work well when applied to few irregularly spaced projections. Concerning (i), existing results about the information content of sparse projection data are reviewed and discussed. Concerning (ii), it is shown how Bayesian inversion methods can be used to incorporate a priori information into the reconstruction method, leading to improved image quality over traditional methods. Based on the discussion, a low-dose three-dimensional x-ray imaging modality is described.</description><identifier>ISSN: 0031-9155</identifier><identifier>EISSN: 1361-6560</identifier><identifier>DOI: 10.1088/0031-9155/48/10/314</identifier><identifier>PMID: 12812457</identifier><identifier>CODEN: PHMBA7</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Algorithms ; Bayes Theorem ; Biological and medical sciences ; Biophysical Phenomena ; Biophysics ; Humans ; Image Processing, Computer-Assisted - statistics & numerical data ; Likelihood Functions ; Markov Chains ; Medical sciences ; Models, Statistical ; Tomography, X-Ray Computed - statistics & numerical data</subject><ispartof>Physics in medicine & biology, 2003-05, Vol.48 (10), p.1437-1463</ispartof><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-68a07246b85d80f902d42eb1552fc93025c780a145aac89276418bdad9b3f3553</citedby><cites>FETCH-LOGICAL-c405t-68a07246b85d80f902d42eb1552fc93025c780a145aac89276418bdad9b3f3553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14788365$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12812457$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Siltanen, S</creatorcontrib><creatorcontrib>Kolehmainen, V</creatorcontrib><creatorcontrib>Järvenpää, S</creatorcontrib><creatorcontrib>Kaipio, J P</creatorcontrib><creatorcontrib>Koistinen, P</creatorcontrib><creatorcontrib>Lassas, M</creatorcontrib><creatorcontrib>Pirttilä, J</creatorcontrib><creatorcontrib>Somersalo, E</creatorcontrib><title>Statistical inversion for medical x-ray tomography with few radiographs: I. General theory</title><title>Physics in medicine & biology</title><addtitle>Phys Med Biol</addtitle><description>In x-ray tomography, the structure of a three-dimensional body is reconstructed from a collection of projection images of the body. Medical CT imaging does this using an extensive set of projections from all around the body. However, in many practical imaging situations only a small number of truncated projections are available from a limited angle of view. Three-dimensional imaging using such data is complicated for two reasons: (i) typically, sparse projection data do not contain sufficient information to completely describe the 3D body, and (ii) traditional CT reconstruction algorithms, such as filtered backprojection, do not work well when applied to few irregularly spaced projections. Concerning (i), existing results about the information content of sparse projection data are reviewed and discussed. Concerning (ii), it is shown how Bayesian inversion methods can be used to incorporate a priori information into the reconstruction method, leading to improved image quality over traditional methods. Based on the discussion, a low-dose three-dimensional x-ray imaging modality is described.</description><subject>Algorithms</subject><subject>Bayes Theorem</subject><subject>Biological and medical sciences</subject><subject>Biophysical Phenomena</subject><subject>Biophysics</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - statistics & numerical data</subject><subject>Likelihood Functions</subject><subject>Markov Chains</subject><subject>Medical sciences</subject><subject>Models, Statistical</subject><subject>Tomography, X-Ray Computed - statistics & numerical data</subject><issn>0031-9155</issn><issn>1361-6560</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqNkM1KAzEURoMotlafQJBsdCFMm9-ZjDspWguCC3XjJmRmEhtpJ2MytfbtzdhiF7pwdeHjfPdeDgCnGA0xEmKEEMVJjjkfMTHCaEQx2wN9TFOcpDxF-6D_Q_TAUQhvCGEsCDsEPUwEJoxnffDy2KrWhtaWag5t_aF9sK6Gxnm40NV3-pl4tYatW7hXr5rZGq5sO4NGr6BXld2E4QpOh3Cia-1jo51p59fH4MCoedAn2zkAz7c3T-O75P5hMh1f3yclQ7xNUqFQRlhaCF4JZHJEKkZ0Eb8mpswpIrzMBFKYcaVKkZMsZVgUlaryghrKOR2Ai83exrv3pQ6tXNhQ6vlc1dotg8woFYLmWQTpBiy9C8FrIxtvF8qvJUayUyo7YbITJpnowqg0ts6265dFVLLrbB1G4HwLqBB9Ga_q0oYdx7J4Pu3-HG4465p_Xr78XfgDlE1l6BcMVpiP</recordid><startdate>20030521</startdate><enddate>20030521</enddate><creator>Siltanen, S</creator><creator>Kolehmainen, V</creator><creator>Järvenpää, S</creator><creator>Kaipio, J P</creator><creator>Koistinen, P</creator><creator>Lassas, M</creator><creator>Pirttilä, J</creator><creator>Somersalo, E</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20030521</creationdate><title>Statistical inversion for medical x-ray tomography with few radiographs: I. General theory</title><author>Siltanen, S ; Kolehmainen, V ; Järvenpää, S ; Kaipio, J P ; Koistinen, P ; Lassas, M ; Pirttilä, J ; Somersalo, E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-68a07246b85d80f902d42eb1552fc93025c780a145aac89276418bdad9b3f3553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Algorithms</topic><topic>Bayes Theorem</topic><topic>Biological and medical sciences</topic><topic>Biophysical Phenomena</topic><topic>Biophysics</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - statistics & numerical data</topic><topic>Likelihood Functions</topic><topic>Markov Chains</topic><topic>Medical sciences</topic><topic>Models, Statistical</topic><topic>Tomography, X-Ray Computed - statistics & numerical data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Siltanen, S</creatorcontrib><creatorcontrib>Kolehmainen, V</creatorcontrib><creatorcontrib>Järvenpää, S</creatorcontrib><creatorcontrib>Kaipio, J P</creatorcontrib><creatorcontrib>Koistinen, P</creatorcontrib><creatorcontrib>Lassas, M</creatorcontrib><creatorcontrib>Pirttilä, J</creatorcontrib><creatorcontrib>Somersalo, E</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physics in medicine & biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Siltanen, S</au><au>Kolehmainen, V</au><au>Järvenpää, S</au><au>Kaipio, J P</au><au>Koistinen, P</au><au>Lassas, M</au><au>Pirttilä, J</au><au>Somersalo, E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical inversion for medical x-ray tomography with few radiographs: I. General theory</atitle><jtitle>Physics in medicine & biology</jtitle><addtitle>Phys Med Biol</addtitle><date>2003-05-21</date><risdate>2003</risdate><volume>48</volume><issue>10</issue><spage>1437</spage><epage>1463</epage><pages>1437-1463</pages><issn>0031-9155</issn><eissn>1361-6560</eissn><coden>PHMBA7</coden><abstract>In x-ray tomography, the structure of a three-dimensional body is reconstructed from a collection of projection images of the body. Medical CT imaging does this using an extensive set of projections from all around the body. However, in many practical imaging situations only a small number of truncated projections are available from a limited angle of view. Three-dimensional imaging using such data is complicated for two reasons: (i) typically, sparse projection data do not contain sufficient information to completely describe the 3D body, and (ii) traditional CT reconstruction algorithms, such as filtered backprojection, do not work well when applied to few irregularly spaced projections. Concerning (i), existing results about the information content of sparse projection data are reviewed and discussed. Concerning (ii), it is shown how Bayesian inversion methods can be used to incorporate a priori information into the reconstruction method, leading to improved image quality over traditional methods. Based on the discussion, a low-dose three-dimensional x-ray imaging modality is described.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><pmid>12812457</pmid><doi>10.1088/0031-9155/48/10/314</doi><tpages>27</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9155 |
ispartof | Physics in medicine & biology, 2003-05, Vol.48 (10), p.1437-1463 |
issn | 0031-9155 1361-6560 |
language | eng |
recordid | cdi_pubmed_primary_12812457 |
source | Institute of Physics |
subjects | Algorithms Bayes Theorem Biological and medical sciences Biophysical Phenomena Biophysics Humans Image Processing, Computer-Assisted - statistics & numerical data Likelihood Functions Markov Chains Medical sciences Models, Statistical Tomography, X-Ray Computed - statistics & numerical data |
title | Statistical inversion for medical x-ray tomography with few radiographs: I. General theory |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A16%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20inversion%20for%20medical%20x-ray%20tomography%20with%20few%20radiographs:%20I.%20General%20theory&rft.jtitle=Physics%20in%20medicine%20&%20biology&rft.au=Siltanen,%20S&rft.date=2003-05-21&rft.volume=48&rft.issue=10&rft.spage=1437&rft.epage=1463&rft.pages=1437-1463&rft.issn=0031-9155&rft.eissn=1361-6560&rft.coden=PHMBA7&rft_id=info:doi/10.1088/0031-9155/48/10/314&rft_dat=%3Cproquest_pubme%3E73388397%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c405t-68a07246b85d80f902d42eb1552fc93025c780a145aac89276418bdad9b3f3553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=73388397&rft_id=info:pmid/12812457&rfr_iscdi=true |