Loading…

Statistical inversion for medical x-ray tomography with few radiographs: I. General theory

In x-ray tomography, the structure of a three-dimensional body is reconstructed from a collection of projection images of the body. Medical CT imaging does this using an extensive set of projections from all around the body. However, in many practical imaging situations only a small number of trunca...

Full description

Saved in:
Bibliographic Details
Published in:Physics in medicine & biology 2003-05, Vol.48 (10), p.1437-1463
Main Authors: Siltanen, S, Kolehmainen, V, Järvenpää, S, Kaipio, J P, Koistinen, P, Lassas, M, Pirttilä, J, Somersalo, E
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c405t-68a07246b85d80f902d42eb1552fc93025c780a145aac89276418bdad9b3f3553
cites cdi_FETCH-LOGICAL-c405t-68a07246b85d80f902d42eb1552fc93025c780a145aac89276418bdad9b3f3553
container_end_page 1463
container_issue 10
container_start_page 1437
container_title Physics in medicine & biology
container_volume 48
creator Siltanen, S
Kolehmainen, V
Järvenpää, S
Kaipio, J P
Koistinen, P
Lassas, M
Pirttilä, J
Somersalo, E
description In x-ray tomography, the structure of a three-dimensional body is reconstructed from a collection of projection images of the body. Medical CT imaging does this using an extensive set of projections from all around the body. However, in many practical imaging situations only a small number of truncated projections are available from a limited angle of view. Three-dimensional imaging using such data is complicated for two reasons: (i) typically, sparse projection data do not contain sufficient information to completely describe the 3D body, and (ii) traditional CT reconstruction algorithms, such as filtered backprojection, do not work well when applied to few irregularly spaced projections. Concerning (i), existing results about the information content of sparse projection data are reviewed and discussed. Concerning (ii), it is shown how Bayesian inversion methods can be used to incorporate a priori information into the reconstruction method, leading to improved image quality over traditional methods. Based on the discussion, a low-dose three-dimensional x-ray imaging modality is described.
doi_str_mv 10.1088/0031-9155/48/10/314
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_12812457</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>73388397</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-68a07246b85d80f902d42eb1552fc93025c780a145aac89276418bdad9b3f3553</originalsourceid><addsrcrecordid>eNqNkM1KAzEURoMotlafQJBsdCFMm9-ZjDspWguCC3XjJmRmEhtpJ2MytfbtzdhiF7pwdeHjfPdeDgCnGA0xEmKEEMVJjjkfMTHCaEQx2wN9TFOcpDxF-6D_Q_TAUQhvCGEsCDsEPUwEJoxnffDy2KrWhtaWag5t_aF9sK6Gxnm40NV3-pl4tYatW7hXr5rZGq5sO4NGr6BXld2E4QpOh3Cia-1jo51p59fH4MCoedAn2zkAz7c3T-O75P5hMh1f3yclQ7xNUqFQRlhaCF4JZHJEKkZ0Eb8mpswpIrzMBFKYcaVKkZMsZVgUlaryghrKOR2Ai83exrv3pQ6tXNhQ6vlc1dotg8woFYLmWQTpBiy9C8FrIxtvF8qvJUayUyo7YbITJpnowqg0ts6265dFVLLrbB1G4HwLqBB9Ga_q0oYdx7J4Pu3-HG4465p_Xr78XfgDlE1l6BcMVpiP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>73388397</pqid></control><display><type>article</type><title>Statistical inversion for medical x-ray tomography with few radiographs: I. General theory</title><source>Institute of Physics</source><creator>Siltanen, S ; Kolehmainen, V ; Järvenpää, S ; Kaipio, J P ; Koistinen, P ; Lassas, M ; Pirttilä, J ; Somersalo, E</creator><creatorcontrib>Siltanen, S ; Kolehmainen, V ; Järvenpää, S ; Kaipio, J P ; Koistinen, P ; Lassas, M ; Pirttilä, J ; Somersalo, E</creatorcontrib><description>In x-ray tomography, the structure of a three-dimensional body is reconstructed from a collection of projection images of the body. Medical CT imaging does this using an extensive set of projections from all around the body. However, in many practical imaging situations only a small number of truncated projections are available from a limited angle of view. Three-dimensional imaging using such data is complicated for two reasons: (i) typically, sparse projection data do not contain sufficient information to completely describe the 3D body, and (ii) traditional CT reconstruction algorithms, such as filtered backprojection, do not work well when applied to few irregularly spaced projections. Concerning (i), existing results about the information content of sparse projection data are reviewed and discussed. Concerning (ii), it is shown how Bayesian inversion methods can be used to incorporate a priori information into the reconstruction method, leading to improved image quality over traditional methods. Based on the discussion, a low-dose three-dimensional x-ray imaging modality is described.</description><identifier>ISSN: 0031-9155</identifier><identifier>EISSN: 1361-6560</identifier><identifier>DOI: 10.1088/0031-9155/48/10/314</identifier><identifier>PMID: 12812457</identifier><identifier>CODEN: PHMBA7</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Algorithms ; Bayes Theorem ; Biological and medical sciences ; Biophysical Phenomena ; Biophysics ; Humans ; Image Processing, Computer-Assisted - statistics &amp; numerical data ; Likelihood Functions ; Markov Chains ; Medical sciences ; Models, Statistical ; Tomography, X-Ray Computed - statistics &amp; numerical data</subject><ispartof>Physics in medicine &amp; biology, 2003-05, Vol.48 (10), p.1437-1463</ispartof><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-68a07246b85d80f902d42eb1552fc93025c780a145aac89276418bdad9b3f3553</citedby><cites>FETCH-LOGICAL-c405t-68a07246b85d80f902d42eb1552fc93025c780a145aac89276418bdad9b3f3553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14788365$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12812457$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Siltanen, S</creatorcontrib><creatorcontrib>Kolehmainen, V</creatorcontrib><creatorcontrib>Järvenpää, S</creatorcontrib><creatorcontrib>Kaipio, J P</creatorcontrib><creatorcontrib>Koistinen, P</creatorcontrib><creatorcontrib>Lassas, M</creatorcontrib><creatorcontrib>Pirttilä, J</creatorcontrib><creatorcontrib>Somersalo, E</creatorcontrib><title>Statistical inversion for medical x-ray tomography with few radiographs: I. General theory</title><title>Physics in medicine &amp; biology</title><addtitle>Phys Med Biol</addtitle><description>In x-ray tomography, the structure of a three-dimensional body is reconstructed from a collection of projection images of the body. Medical CT imaging does this using an extensive set of projections from all around the body. However, in many practical imaging situations only a small number of truncated projections are available from a limited angle of view. Three-dimensional imaging using such data is complicated for two reasons: (i) typically, sparse projection data do not contain sufficient information to completely describe the 3D body, and (ii) traditional CT reconstruction algorithms, such as filtered backprojection, do not work well when applied to few irregularly spaced projections. Concerning (i), existing results about the information content of sparse projection data are reviewed and discussed. Concerning (ii), it is shown how Bayesian inversion methods can be used to incorporate a priori information into the reconstruction method, leading to improved image quality over traditional methods. Based on the discussion, a low-dose three-dimensional x-ray imaging modality is described.</description><subject>Algorithms</subject><subject>Bayes Theorem</subject><subject>Biological and medical sciences</subject><subject>Biophysical Phenomena</subject><subject>Biophysics</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - statistics &amp; numerical data</subject><subject>Likelihood Functions</subject><subject>Markov Chains</subject><subject>Medical sciences</subject><subject>Models, Statistical</subject><subject>Tomography, X-Ray Computed - statistics &amp; numerical data</subject><issn>0031-9155</issn><issn>1361-6560</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqNkM1KAzEURoMotlafQJBsdCFMm9-ZjDspWguCC3XjJmRmEhtpJ2MytfbtzdhiF7pwdeHjfPdeDgCnGA0xEmKEEMVJjjkfMTHCaEQx2wN9TFOcpDxF-6D_Q_TAUQhvCGEsCDsEPUwEJoxnffDy2KrWhtaWag5t_aF9sK6Gxnm40NV3-pl4tYatW7hXr5rZGq5sO4NGr6BXld2E4QpOh3Cia-1jo51p59fH4MCoedAn2zkAz7c3T-O75P5hMh1f3yclQ7xNUqFQRlhaCF4JZHJEKkZ0Eb8mpswpIrzMBFKYcaVKkZMsZVgUlaryghrKOR2Ai83exrv3pQ6tXNhQ6vlc1dotg8woFYLmWQTpBiy9C8FrIxtvF8qvJUayUyo7YbITJpnowqg0ts6265dFVLLrbB1G4HwLqBB9Ga_q0oYdx7J4Pu3-HG4465p_Xr78XfgDlE1l6BcMVpiP</recordid><startdate>20030521</startdate><enddate>20030521</enddate><creator>Siltanen, S</creator><creator>Kolehmainen, V</creator><creator>Järvenpää, S</creator><creator>Kaipio, J P</creator><creator>Koistinen, P</creator><creator>Lassas, M</creator><creator>Pirttilä, J</creator><creator>Somersalo, E</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20030521</creationdate><title>Statistical inversion for medical x-ray tomography with few radiographs: I. General theory</title><author>Siltanen, S ; Kolehmainen, V ; Järvenpää, S ; Kaipio, J P ; Koistinen, P ; Lassas, M ; Pirttilä, J ; Somersalo, E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-68a07246b85d80f902d42eb1552fc93025c780a145aac89276418bdad9b3f3553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Algorithms</topic><topic>Bayes Theorem</topic><topic>Biological and medical sciences</topic><topic>Biophysical Phenomena</topic><topic>Biophysics</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - statistics &amp; numerical data</topic><topic>Likelihood Functions</topic><topic>Markov Chains</topic><topic>Medical sciences</topic><topic>Models, Statistical</topic><topic>Tomography, X-Ray Computed - statistics &amp; numerical data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Siltanen, S</creatorcontrib><creatorcontrib>Kolehmainen, V</creatorcontrib><creatorcontrib>Järvenpää, S</creatorcontrib><creatorcontrib>Kaipio, J P</creatorcontrib><creatorcontrib>Koistinen, P</creatorcontrib><creatorcontrib>Lassas, M</creatorcontrib><creatorcontrib>Pirttilä, J</creatorcontrib><creatorcontrib>Somersalo, E</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physics in medicine &amp; biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Siltanen, S</au><au>Kolehmainen, V</au><au>Järvenpää, S</au><au>Kaipio, J P</au><au>Koistinen, P</au><au>Lassas, M</au><au>Pirttilä, J</au><au>Somersalo, E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical inversion for medical x-ray tomography with few radiographs: I. General theory</atitle><jtitle>Physics in medicine &amp; biology</jtitle><addtitle>Phys Med Biol</addtitle><date>2003-05-21</date><risdate>2003</risdate><volume>48</volume><issue>10</issue><spage>1437</spage><epage>1463</epage><pages>1437-1463</pages><issn>0031-9155</issn><eissn>1361-6560</eissn><coden>PHMBA7</coden><abstract>In x-ray tomography, the structure of a three-dimensional body is reconstructed from a collection of projection images of the body. Medical CT imaging does this using an extensive set of projections from all around the body. However, in many practical imaging situations only a small number of truncated projections are available from a limited angle of view. Three-dimensional imaging using such data is complicated for two reasons: (i) typically, sparse projection data do not contain sufficient information to completely describe the 3D body, and (ii) traditional CT reconstruction algorithms, such as filtered backprojection, do not work well when applied to few irregularly spaced projections. Concerning (i), existing results about the information content of sparse projection data are reviewed and discussed. Concerning (ii), it is shown how Bayesian inversion methods can be used to incorporate a priori information into the reconstruction method, leading to improved image quality over traditional methods. Based on the discussion, a low-dose three-dimensional x-ray imaging modality is described.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><pmid>12812457</pmid><doi>10.1088/0031-9155/48/10/314</doi><tpages>27</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-9155
ispartof Physics in medicine & biology, 2003-05, Vol.48 (10), p.1437-1463
issn 0031-9155
1361-6560
language eng
recordid cdi_pubmed_primary_12812457
source Institute of Physics
subjects Algorithms
Bayes Theorem
Biological and medical sciences
Biophysical Phenomena
Biophysics
Humans
Image Processing, Computer-Assisted - statistics & numerical data
Likelihood Functions
Markov Chains
Medical sciences
Models, Statistical
Tomography, X-Ray Computed - statistics & numerical data
title Statistical inversion for medical x-ray tomography with few radiographs: I. General theory
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A16%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20inversion%20for%20medical%20x-ray%20tomography%20with%20few%20radiographs:%20I.%20General%20theory&rft.jtitle=Physics%20in%20medicine%20&%20biology&rft.au=Siltanen,%20S&rft.date=2003-05-21&rft.volume=48&rft.issue=10&rft.spage=1437&rft.epage=1463&rft.pages=1437-1463&rft.issn=0031-9155&rft.eissn=1361-6560&rft.coden=PHMBA7&rft_id=info:doi/10.1088/0031-9155/48/10/314&rft_dat=%3Cproquest_pubme%3E73388397%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c405t-68a07246b85d80f902d42eb1552fc93025c780a145aac89276418bdad9b3f3553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=73388397&rft_id=info:pmid/12812457&rfr_iscdi=true