Loading…
Integrin alpha5beta1 and ADAM-17 interact in vitro and co-localize in migrating HeLa cells
Tumor necrosis factor (TNF) alpha-converting enzyme (TACE/ADAM-17) has diverse roles in the proteolytic processing of cell surface molecules and, due to its ability to process TNFalpha, is a validated therapeutic target for anti-inflammatory therapies. Unlike a number of other ADAM proteins, which i...
Saved in:
Published in: | The Journal of biological chemistry 2004-05, Vol.279 (21), p.22377 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Tumor necrosis factor (TNF) alpha-converting enzyme (TACE/ADAM-17) has diverse roles in the proteolytic processing of cell surface molecules and, due to its ability to process TNFalpha, is a validated therapeutic target for anti-inflammatory therapies. Unlike a number of other ADAM proteins, which interact with integrin receptors via their disintegrin domains, there is currently no evidence for an ADAM-17-integrin association. By analyzing the adhesion of a series of cell lines with recombinant fragments of the extracellular domain of ADAM-17, we now demonstrate a functional interaction between ADAM-17 and alpha(5)beta(1) integrin in a trans orientation. Because ADAM-17-mediated adhesion was sensitive to RGD peptides and EDTA, and the integrin-binding site within ADAM-17 was narrowed down to the disintegrin/cysteine-rich region, the two molecules appear to have a ligand-receptor relationship mediated by the alpha(5)beta(1) ligand binding pocket. Intriguingly, ADAM-17 and alpha(5)beta(1) were found to co-localize in both membrane ruffles and focal adhesions in HeLa cells. When confluent HeLa cell monolayers were wounded, ADAM-17 and alpha(5)beta(1) redistributed to the leading edge and co-localized, which is suggestive of a cis orientation. We postulate that the interaction of ADAM-17 with alpha(5)beta(1) may target or modulate its metalloproteolytic activity. |
---|---|
ISSN: | 0021-9258 |