Loading…

Surface reaction mechanisms of hydrazine on Si(100)-2 x 1 surface: NH3 desorption pathways

Multireference as well as single-reference wave functions were adopted to study the surface reaction mechanisms of hydrazine. The initial surface mechanisms resemble those of ammonia and its methyl derivatives. MRMP2 values indicate that the lifetime of initial molecularly adsorbed species should be...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2004-01, Vol.120 (2), p.979
Main Authors: Lim, Chultack, Choi, Cheol Ho
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Multireference as well as single-reference wave functions were adopted to study the surface reaction mechanisms of hydrazine. The initial surface mechanisms resemble those of ammonia and its methyl derivatives. MRMP2 values indicate that the lifetime of initial molecularly adsorbed species should be longer than previously suggested. High energy path as well as low energy path of subsequent surface reactions were found. The theoretical initial surface product of low energy path is consistent with the experimentally suggested structure. Both paths eventually lead to very stable surface products, which are also consistent with the experimentally suggested structures. The reaction channels of the experimentally observed NH3 desorptions were also revealed. It was shown that the high reactivity of hydrazine as compared to ammonia and its methyl derivatives is due to the high nucleophilic ability of the additional nitrogen atom of hydrazine.
ISSN:0021-9606